Inferring Phylogenies with RAxML-VI-HPC

Alexandros Stamatakis
Swiss Federal Institute of Technology Lausanne
School of Computer & Communication Sciences
Alexandros.Stamatakis@epfl.ch

Abstract: Randomized Axelerated Maximum Likelihood version VI for High Performance Computing (RAxML-VI-HPC) is an efficient program for phylogenetic analyses with thousands of taxa under the popular Maximum Likelihood (ML) criterion. The software demonstration will cover the basic features of RAxML-VI-HPC and will show how to deploy it on sequential and parallel computer architectures for real-world phylogenetic studies. To the best of the authors knowledge RAxML-VI-HPC has been used to infer trees on the two largest data matrices analyzed under ML to date: a 25,057-taxon alignment of protobacteria (1,463 bp) and a 2,182-taxon alignment of mammals (51,089 bp). The program is available as open-source code at diwww.epfl.ch/~stamatak (software frame).

1 RAxML Software Demonstration

RAxML-VI-HPC [SLM05] is a program for large-scale phylogenetic analyses under the ML criterion. The program is currently the featured application on the CIPRES (Cyberinfrastructure for Phylogenetic RESearch, www.phylo.org) project web site. It allows for inference of huge ML trees under sufficiently complex substitution models within reasonable times. For example, on a medium-sized cluster with 136 CPUs it was feasible to compute 1,000 non-parametric bootstraps on a 1,500 taxon alignment. The author has recently given a series of invited talks about RAxML at various research institutes and international conferences:

- Invited Talk: “RAxML-VI: A program for large-scale Maximum Likelihood-based phylogenetic analyses; How it works and how to use it”, Max-Planck-Institute for Developmental Biology, Tübingen, Germany, February 2006.
Some of the largest published ML-based analyses to date have been conducted with RAxML [RHJP05] [LBT+05] [LHW+06]. On-going work includes the computation of a backbone tree for Bacteria with approximately 9,000 taxa (Pace Laboratory, University of Colorado at Boulder), a phylogeny for Acer with 582 taxa (Guido Grimm, Universität Tübingen), and the analysis of a mammalian multi-gene alignment comprising 2,182 sequences (Olaf Bininda-Emonds, Technische Universität München). The program is also part of the greengenes project [DHL+06] (greengenes.lbl.gov).

A recent performance study on real world datasets \(\geq \) 1,000 taxa reveals that it is able to find better trees in less time and with lower memory consumption than other current programs (IQPNNI, PHYML, GARLI). Moreover, RAxML-VI-HPC has been parallelized with MPI (Message Passing Interface) for LINUX PC clusters to enable parallel non-parametric bootstrapping. In addition, it has been parallelized with OpenMP [SOL05] to accelerate inferences on large memory-intensive multi-gene alignments.

The presentation will provide guidelines under what circumstances which version should be used and how alignment-dependent search parameters are best determined. The usage of the GTR+CAT approximation [Sta06] in RAxML which can be used as a replacement for the computationally more intensive GTR+I model will also be explained. Finally, several new program options of RAxML, such as the possibility to infer trees under mixed/partitioned models and to specify various forms of constraint trees, will be presented.

References

