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Abstract—The molecular data avalanche generated by novel
wet-lab sequencing technologies allows for reconstructing
phylogenies (evolutionary trees) using hundreds of complete
genomes as input data. Therefore, scalable codes are required
to infer trees on these data under likelihood-based models of
molecular evolution. We recently introduced a checkpointable
and scalable MPI-based code for this purpose called RAxML-
Light and are currently using it for several real-world data
analysis projects. It turned out that the scalability of RAxML-
Light is nonetheless still limited because of the fork-join
parallelization approach that is deployed. To this end, we intro-
duce a novel, generally applicable, approach to computing the
phylogenetic likelihood in parallel on whole-genome datasets
and implement it in ExaML (Exascale Maximum Likelihood).
ExaML executes up to 3.2 times faster than RAxML-Light
because of the more efficient parallelization and communication
scheme, while implementing exactly the same tree search
algorithm. Moreover, the new parallelization approach exhibits
lower code complexity and a more appropriate structure for
implementing fault tolerance with respect to hardware failures.
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I. INTRODUCTION

Next generation sequencing technologies allow biologists

to generate an unprecedented amount of molecular raw data

that needs to be analyzed. Sequencing a genome has be-

come relatively cheap at present, hence, the main challenge

consists in analyzing the data.

Our research group is currently involved in the 1KITE

(one thousand insect transcriptome) sequencing project

www.1kite.org that was initiated in 2011. To date, 100

full insect transcriptomes have already been sequenced and

we expect the sequencing of all 1000 transcriptomes to be

completed by the end of 2012.

Reconstructing phylogenetic trees on such datasets to dis-

entangle evolutionary relationships under complex statistical

models that deploy the likelihood criterion [1], be it in a

Maximum Likelihood [1] or Bayesian setting (see, e.g., [2]

for an early paper), requires a huge amount of computational

resources. This holds true, both for the amount of memory,

as well as the CPU time that is required. Just computing the

likelihood score on a DNA dataset with 20,000,000 base

pairs (also referred to as sites) and 1,500 taxa (sequences)

under a simple model of DNA substitution that does not

even take into account rate heterogeneity among sites [3]

already requires 1TB of RAM [4].

To address these challenges, we recently released a tool

called RAxML-Light [4] that is checkpointable and scales

across several shared-memory nodes using MPI (Message

Passing Interface). In a proof-of-concept execution we

demonstrated that, RAxML-Light can infer trees on datasets

such as the above (1500 taxa, 20,000,000 sites) using more

than 600 cores. However, the limitations of the classical

fork-join approach for computing the likelihood in parallel

soon became apparent, in particular for partitioned datasets.

By partitioned datasets we refer to multi-gene or whole

genome datasets that are sub-divided into distinct parti-

tions (sets of alignment sites/columns). When datasets are

partitioned, likelihood model parameters such as the α

shape parameter of the Γ model that accommodates rate

heterogeneity among sites [3], the branch lengths, or the rate

parameters in a GTR (General Time Reversible) nucleotide

substitution matrix [5] are optimized (Maximum Likelihood)

or sampled (Bayesian inference) independently for each

data partition. Frequently, such large datasets are partitioned

on a per-gene basis, that is, likelihood model parameters

are inferred separately for each gene. Often, DNA datasets

are also partitioned with respect to the 1st, 2nd, and 3rd

codon position. Biologically, partitioning such large datasets

’makes sense’, because different genes evolve at different

speeds due to heterogeneous evolutionary pressures. Iden-

tifying a ’good’ or optimal partitioning scheme (i.e., how

a dataset is best partitioned) represents a topic of current

research [6], [7] and is outside the scope of this paper. Here,

we assume that, a fixed partition scheme is given. Based

on our interactions with the large RAxML user community,

we observed that biologists typically desire to infer trees

on ever growing datasets. At the same time, they also wish

to increase the number of data partitions such as to model

evolutionary processes in a more realistic way.

Given this trend toward partitioned analyses of whole-

genome datasets, we have radically re-designed the paral-

lelization scheme that is used in RAxML and developed a

code called ExaML (Exascale Maximum Likelihood) to ac-

commodate these new computational requirements. ExaML



is up to three times faster than RAxML-Light because we

drastically reduced the number of collective communication

operations, and, more importantly, the amount of data that

needs to be transferred during each collective communica-

tion call that triggers a parallel region. We achieved this

by abandoning the classical fork-join approach that used a

dedicated master process for orchestrating the tree search

and the associated likelihood computations across all parti-

tions and processes in favor of a de-centralized approach.

The fundamental idea of the decentralized approach is that

each process executes a local, yet consistent, copy of the

search algorithm. Processes only need to communicate with

each other when the overall likelihood score (or the first

and second derivative of the likelihood function) over all

partitions needs to be computed.

The code is available as open-source code at https://

github.com/stamatak/ExaML and has already been used at

production level for the 1KITE project (see above) as well

as for a bird phylogenomics project at various supercom-

puting facilities (San Diego Supercomputer Center, Munich

Supercomputing Center).

The remainder of this paper is organized as follows: In

Section II we briefly review related work on parallelizing the

likelihood function using the fork-join paradigm. Thereafter,

we provide details on the new parallelization scheme in

Section III. In the subsequent Section IV we describe the

experimental setup and provide performance results. We

conclude in Section V.

II. RELATED WORK

To the best of our knowledge, the current paper is the first

to identify performance problems pertaining to the fork-join

approach for parallel likelihood computations and to propose

an alternative solution. Hence, our review of related work

covers previous approaches to parallelizing likelihood-based

codes using the fork-join approach as well as work related

to load balance issues that arise with partitioned datasets.

A detailed overview over the fork-join approach to paral-

lelizing likelihood computations on multi-core systems, dis-

tributed memory clusters, and accelerator cards (e.g. GPUs)

is provided in [8].

The first MPI-based fork-join implementations were in-

troduced with PBPI [9], a simple proof-of-concept program

for Bayesian phylogenetic inference, and a predecessor of

RAxML-Light that was specifically tuned for the IBM

BlueGene/L supercomputer [10], [11]. This RAxML code

version also forms part of the SPEC (Standard Performance

Evaluation Corporation) MPI benchmark suite [12].

The fork-join paradigm is also used implicitly in all

parallel implementations of the likelihood function that

deploy OpenMP for multi-core systems [13], [14], [15].

It is also used explicitly in the PThreads version of

RAxML [16]. Moreover, it represents the standard ap-

proach for orchestrating/off-loading likelihood computations

to GPUs [17], [18], [19]. In this scenario, a CPU will steer

the tree search and offload the likelihood computations to

the GPU(s). In other words, the GPU does not need to be

aware of the fact that, operations are conducted on a tree

data structure. Instead, the GPU simply executes the floating

point operations that are required for calculating the likeli-

hood. Note that, widely-used codes such as MrBayes [20],

PHYML [21], GARLI [14], or RAxML [22] spend more

than 90% of total execution time in likelihood calculations.

Hence, computationally, all of those standard codes face

similar challenges.

An issue that has rarely been addressed is that of load-

balance and data distribution for partitioned analyses. In [23]

we showed that, when datasets are partitioned, changes to

per-partition model parameters need to be proposed and eval-

uated simultaneously for all partitions to increase parallel

efficiency under the fork-join approach. Improved efficiency

is obtained by reducing the number of parallel regions and

increasing the amount of work that is conducted per parallel

region. This also holds true for the novel parallelization

scheme we present here. In the Bayesian context, this implies

that, MCMC proposals to change, for instance, the α shape

parameter of the Γ model, need to be applied to and be

evaluated simultaneously for all partitions. This would also

require a modification of the Hastings ratio calculations. To

date, this type of simultaneous proposals/parameter changes,

is only implemented in the parallel versions of RAxML

(PThreads) and RAxML-Light (PThreads & MPI).

Another critical issue pertaining to parallel analysis of

large, partitioned datasets with 100 or more partitions is

data distribution. As outlined in [24] and [4], significant

performance improvements (up to one order of magni-

tude) can be achieved by distributing/assigning partitions

monolithically to processors, rather than performing data

distribution at a higher granularity in a cyclic, site-by-site

fashion. However, achieving an optimally balanced data

distribution when partitions are assigned monolithically to

processors is NP-hard, because it is equivalent to the multi-

processor scheduling problem [24]. The option to distribute

data on a per-partition basis is available in RAxML-Light

and ExaML (-Q option). Again, we are not aware of any

other likelihood-based code that also addresses this problem.

Despite our previous efforts to improve load balance and

data distribution in RAxML-Light, parallel efficiency on

partitioned datasets is still limited by the communication

effort that comes with the fork-join approach. We describe

and address this problem in the following Section.

III. PARALLELIZATION SCHEME

Initially we discuss the limitations of the fork-join ap-

proach. Thereafter, we present the new, de-centralized ap-

proach in Section III-B.



A. Limitations of the Fork-Join Approach

The fork-join approach to parallelizing likelihood calcu-

lations was introduced several years ago (see, e.g., [13] for

one early paper from 2005), when input alignments still

used to be small by current standards. In many cases, input

alignments contained at most 10 to 20 genes (partitions)

and only a few phylogenetic inference programs offered the

possibility to conduct partitioned analyses.

Since execution times of likelihood-based phylogenetic

inference programs are largely dominated by likelihood

calculations, the likelihood functions represent the natu-

ral candidates for parallelization. Parallelization is fairly

straight-forward, since the likelihood model assumes that

sites evolve independently [1]. This means that, given a

tree for an alignment of 100 sites (alignment columns),

the corresponding 100 per-site log likelihood scores can be

computed independently and simultaneously in parallel. To

obtain the overall log likelihood score for the given tree, one

only needs to execute a final reduction operation on the 100

per-site log likelihood scores.

Bayesian inference programs typically use two main func-

tions: one for computing conditional likelihood arrays at

inner nodes of the tree (also called ancestral probability

vectors) according to the Felsenstein pruning algorithm [1]

and one for computing the overall log likelihood score at

the virtual root of the tree (including the parallel reduction

operation mentioned above). Maximum likelihood programs

typically use an additional, third function, for computing

the first and second derivative of the phylogenetic likelihood

which is required for direct numerical optimization of branch

lengths to maximizing the likelihood (typically using the

Newton-Raphson procedure). Note that, this also requires

parallel reduction operations because the overall first and

second derivatives of the likelihood score (across all sites)

are required. For a more detailed description of likelihood

computations please refer to [8].

In the basic fork-join approach, the tree search (or MCMC

proposal mechanism) is executed by a dedicated master

thread/process, which is the only process that maintains a

tree data structure and the current state of the search. The

worker processes are agnostic regarding the semantics of

the tree search and only execute one of the three likelihood

functions (overall likelihood, conditional likelihood vectors,

derivatives of the likelihood) on the fraction of the data (pro-

portion of sites) that has been assigned to them. Thus, every

time the master process needs to re-calculate the likelihood

of the tree (either because the tree topology was changed, or

a model parameter such as α has been altered), it triggers a

parallel region. These parallel regions are terminated, either

by a barrier (conditional likelihood arrays) or by a parallel

reduction operation (overall likelihood and derivatives of the

likelihood). Note that, these parallel regions are extremely

fine-grain and invoked frequently. The PThreads version of
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Figure 1: Schematic outline of the fork-join parallelization

approach with one master and two worker threads.

RAxML executes between 100,000 - 800,000 barriers within

10 seconds of run time on a 16 core system [25] on medium-

sized datasets.

The type and sequence of operations that worker processes

need to execute are specified in a so-called traversal de-

scriptor (the Beagle library uses an analogous concept [15]).

Assume, for instance, that the value of the α shape pa-

rameter has been changed. In this case, the conditional

likelihood arrays of the entire tree need to be re-computed

via a recursive post-order traversal to correctly calculate

the resulting likelihood. This post-order is computed at the

master node and stored in the traversal descriptor. In the

shared-memory case, the worker threads can simply access

this pre-computed traversal descriptor via shared memory.

On distributed memory systems, one needs to explicitly

broadcast the traversal descriptor (see on-line supplement

of [4] for details) for each parallel region. Also note that,

when one of the model parameters is changed (e.g., a rate

in the GTR matrix or the α shape parameter), they also

need to be broadcasted to all worker processes. A schematic

representation of the fork-join approach is provided in

Figure 1.

The fork-join approach, in particular under the distributed

memory setting we consider here, works well as long as

entering and exiting parallel regions is latency-bound. How-

ever, because of the high number of extremely fine-grain

parallel regions, this approach becomes inefficient when en-

tering and exiting parallel regions (where all processes wait

for communication without executing any useful likelihood

computations) is bandwidth-bound. Unfortunately, this is

exactly what happens for partitioned analyses:

Assume that, we are analyzing a large, partitioned dataset

with 1000 partitions. When trying to optimize, for instance,

the 1000 distinct α shape parameters (one per partition),

the process that steers this numerical optimization (in the

maximum likelihood case) or proposes new α values for

all 1000 partitions (in the Bayesian case) is the master

process. Thus, for each set of 1000 new α values that we

want to evaluate, we need to broadcast an array of 1000



double values to all worker processes. Thus, as we show in

Section IV, triggering parallel regions becomes bandwidth-

bound, instead of latency-bound and thereby substantially

decreases parallel efficiency. This is a problem which is

inherent to the general fork-join based parallelization ap-

proach.

Therefore, we require a fundamentally different approach

to reduce the amount of data that is being communicated

per parallel region. At the same time we need to decrease

the overall number of collective communication operations

to an absolute minimum.

B. The De-Centralized Approach

The solution to improving parallel performance is fairly

straight-forward. Instead of using a fork-join paradigm, we

deploy a de-centralized approach where each process exe-

cutes a local, consistent copy of the tree search algorithm. By

consistent we mean that, all processes operate on exactly the

same tree topology with exactly identical model parameter

values (GTR rates, branch lengths, α parameters, etc.). In

this setting, all processes execute the same search steps on

different parts of the data. To make sure that, all processes

are always in the same state, they simply need to obtain

the same overall values (across the entire alignment that is

distributed across processors) for the log likelihood score of

the tree and the first and second derivatives of the likelihood

function. In other words, processes only need to communi-

cate with each other for exchanging results (computed on the

process-specific sub-set of the alignment) that are required to

decide which topology to evaluate next in the course of the

tree search (in contrast to the fork-join paradigm, where this

decision is exclusively taken by the master process). This can

easily be achieved by inserting two MPI_Allreduce()

calls into the code. One call needs to be inserted in the

function that computes the overall log likelihood and the

other invocation into the routine that computes the deriva-

tives of the likelihood function. In the Bayesian case, only

a single MPI_Allreduce() needs to be integrated into

the code, since computing the derivatives of the likelihood

function is not required. In contrast to the fork-join approach

we thus completely avoid broadcasting traversal descriptors

and arrays with changed model parameters. Note that, in

the fork-join approach MPI_Reduce() calls are required

instead of MPI_Allreduce() invocations. Therefore, the

parallel performance of our new approach solely depends on

the efficiency of the MPI_Allreduce() implementation.

It is important to note that, MPI_Allreduce() needs to

yield exactly identical numerical values at all processors

because otherwise processes may end up in inconsistent

states (chose different trees).

A schematic outline of this de-centralized parallelization

approach is provided in Figure 2. The Figure shows that

each process has a copy of the tree data structure and

computes the traversal order of the tree locally. It also

shows how the input data (an alignment of 6 taxa with

6 sites/columns) is distributed among processes. The key

differences to Figure 1 are: (i) only a single (instead of

two) collective communication operation for computing the

likelihood at the virtual root is required, (ii) no dedicated

master thread/process is used, (iii) less data is communicated

for obtaining the likelihood of the tree, and (iv) Figure 2 is

less complex.

In fact, the reduced code complexity of our new approach

represents an additional advantage. Except for some ad-

ditional MPI calls to initially distribute the data, handle

the CAT model of rate heterogeneity, and to integrate

MPI_Allreduce() invocations into the three likelihood

functions (evaluation, derivatives, conditional likelihoods),

the code is identical to the sequential version of RAxML-

Light. The ExaML source code needs less than 50 calls

to MPI routines, while RAxML-Light uses more than 100

invocations.

The initial coding of the proof-of-concept ExaML version

took A. Stamatakis (who has been developing RAxML for

more than 10 years) a single day. Subsequent code extension

(e.g., including the CAT model of rate heterogeneity and

checkpointing) required another 3-4 days. This is far less

coding effort than required for designing RAxML-Light.

Moreover, the de-centralized approach was implemented

directly in the sequential code and the only more complex

modifications were required for initial data distribution using

the algorithm developed in [24].

As such, it will be relatively easy to also parallelize other

codes, such as, for instance MrBayes using the scheme intro-

duced here. As stated before, the only difficulty regarding

Bayesian codes (and other maximum likelihood codes as

well) will be that, the proposal mechanism will have to

be modified in such a way that it proposes simultaneous

parameter changes for all partitions. Another advantage is

that, one can completely avoid the concept and broadcasts of

traversal descriptors. While traversal descriptors are usually

relatively short (i.e., do not represent a full tree traversal

containing all nodes, but just a partial tree traversal compris-

ing 4-5 nodes on average; for details see supplement of [4])

broadcasting them for essentially every parallel region still

induces a performance penalty.

Thus, ExaML yields better parallel efficiency at substan-

tially lower code complexity.

IV. EXPERIMENTAL SETUP AND RESULTS

In this Section, we assess the parallel efficiency of ExaML

for the typical usage scenarios and compare it to RAxML-

Light. We also examine the additional communication cost

incurred by broadcasting the traversal descriptor.

A. Cluster System

As test platform we used our institutional cluster at the

Heidelberg Institute for Theoretical Studies. The cluster
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tion approach with two processes.

comprises 50 AMD Magny-Cours nodes. Every node has

6 AMD Opteron 6174 processors with 8 cores each (48

cores per node). The per-core cache size is 512 kB. The

nodes are connected via a QLogic Infinband interconnect.

Four nodes out of 50 nodes are equipped with 256 GB

of RAM, the remaining 46 nodes have 128 GB RAM.

We compiled RAxML-Light and ExaML using the GNU

gcc compiler (version 4.7.1) and performed runs with the

mvapich2 (version 1.5) MPI implementation.

B. Test Datasets

As outlined in Section I, current phylogenetic inference

software faces two major scalability challenges: (i) huge

datasets in terms of taxa and/or alignment length, and (ii)

datasets with an increasing number of data partitions.

For addressing challenge (i), we executed ExaML on a

simulated DNA dataset that was used in [4] as an example

for a large current dataset. It consists of 150 sequences and

has a length of 20,000,000 base pairs. The total number

of unique site patterns which is relevant for parallel per-

formance and scalability in this alignment is 12,597,450.

Note that, identical sites/columns in an alignment can be

compressed into site patterns, hence the number of unique

site patterns actually determines the length of the conditional

likelihood arrays our algorithms operate on.

For assessing the impact of the number of partitions on

ExaML execution times (challenge (ii)), we created a set of

alignments with an increasing number of partitions based on

a real-world biological dataset with 52 species. The typical

average gene length and, hence partition size, amounts to

approximately 1000 base pairs. Therefore, we divided the

original alignment into partitions of this size. We generated

5 datasets from this real world alignment by extracting the

first 10 (10,000 bp), 50 (50,000 bp), 100 (100,000 bp), 500

(500,000 bp), and 1,000 (1,000,000 bp) partitions (sites),

respectively.
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Figure 3: Log-scaled runtimes of ExaML under the PSR

(black) and Γ models (gray) of rate heterogeneity on the 150

taxon × 20,000,000 bp alignment. Dashed lines indicate the

linear speedup with respect to single-node runtime.

All programs in the RAxML-family implement two mod-

els for accommodating rate heterogeneity among sites: (i)

the standard Γ model of rate heterogeneity [3] and (ii)

the CAT model of rate heterogeneity [26]. Note that, in

ExaML we decided to rename CAT to PSR (Per Site Rate

model) to avoid (frequent) confusion with the CAT model

as implemented in PhyloBayes [27] which is fundamentally

different. Because for the PSR model, we need to optimize

per-site evolutionary rates, the MPI communication patterns

for PSR and Γ exhibit different patterns. We executed test

runs for both models, since both are being used in practice.

C. Runtimes on a large unpartitioned Alignment

Figure 3 depicts execution times for ExaML on the

unpartitioned 150 taxon × 20,000,000 bp alignment. For the

runs on 1, 2, and 4 nodes, we executed ExaML on cluster

nodes with 256 GB RAM. Nonetheless, for runs under the Γ
model of rate heterogeneity on one and two nodes, memory

requirements exceeded main memory capacity and led to

a performance degradation because of swapping. Note that,

the PSR model of rate heterogeneity requires four times less

memory than Γ (see [26] for details) which represents the

main advantage of the PSR model.

In general, we observed that, the alternative communi-

cation scheme implemented in ExaML scales well up to

32 nodes. For the PSR model, we obtain a speedup of 6.9

on 8 nodes and a speedup of 26.9 on 32 nodes relative to



the execution time on a single 48-core node. Runs under

the Γ model yielded super-linear speedups with respect to

single-node execution times, because of the aforementioned

memory-shortage that triggered the swapping mechanism. If

we use the run on 8 nodes as reference, we obtain speedups

of 1.9 and 3.4, for runs on 16 and 32 nodes, respectively.

On 32 nodes, ExaML requires 4990 seconds to com-

plete under Γ, while RAxML-Light needed 6108 seconds.

The execution times under PSR are similar for RAxML-

Light and ExaML. This amounts to a performance increase

under the widely used Γ model between 6.0 and 35.8%.

Note that, the PSR model is currently only implemented

in RAxML and FastTree 2.0 [28]. All other widely-used

programs only deploy the Γ model. Also note that, these runs

were unpartitioned, hence the performance improvement is

exclusively due to the reduction in the number of collective

communication operations in ExaML and not because less

data is communicated (as in the partitioned case).

D. Runtimes on partitioned Alignments

We executed RAxML-Light and ExaML on the set of

alignments with an increasing number of partitions and

increasing total alignment length. As described in Section II,

we have to assign/distribute entire partitions monolithically

to processors [24], if there are substantially more partitions

than processors available. This is henceforth denoted as MPS

option. MPS data distribution can be activated via the -Q

command line switch in ExaML and RAxML-Light. We

executed both programs on 4 nodes (192 cores in total)

for all alignments and enabled the MPS option (-Q) for

alignments with ≥ 500 partitions. In Figure 4, data points

for runs with and without the MPS option are not connected

to underline this altered parameter setting.

For 10, 50 and 100 partitions under the PSR model of rate

heterogeneity, ExaML performs equally well as RAxML-

Light (see Figure 4(a)). In contrast, ExaML substantially

outperforms RAxML-Light on the three smaller alignments

(10, 50, 100 partitions), when the search is conducted under

Γ. For all three alignments, the execution time is reduced

by approximately 30%. For the two large datasets (500 and

1000 partitions), this performance advantage becomes more

pronounced. Under Γ, ExaML executes 3.1 times faster

on 500 partitions and 2.6 times faster on 1000 partitions.

ExaML also outperforms RAxML-Light on the two large

datasets under the PSR model. Here, ExaML is 3.2 times

faster on 500 partitions and 2.7 times faster on 1,000

partitions.

We repeated the above experiments for individual, per-

partition, branch length optimization (-M command line op-

tion). Under this setting, the branch lengths for each partition

are optimized individually and independently rather than

being optimized jointly across all partitions. This increases

overall inference times because more parameters need to be

optimized. A tree with n taxa has 2n− 3 branches. Hence,

instead of optimizing 2n− 3 branch lengths, under -M, we

need to optimize p(2n − 3) branch lengths, where p is the

number of partitions. This setting is of interest here, because

it substantially increases the size of the traversal descriptor

(which needs to hold all p(2n− 3) branch lengths) as well

as message sizes when derivatives of the likelihood function

are communicated among processes.

Note that, under this setting, the run time differences

between Γ and the PSR model are less pronounced (see

Figure 4(b)). In general, ExaML also outperforms RAxML-

Light in execution time or performs slightly worse than

RAxML-Light. For runs without MPS enabled, ExaML is

1.7 times faster than RAxML-Light in the best case (Γ, 100

partitions). Under the PSR model on 1000 partitions, ExaML

outperforms RAxML-Light by a factor of 2.0.

It may appear intriguing that the execution times of

ExaML are actually higher for 50 than for 100 partitions

under the Γ model. The reason for this is that, the heuristic

search algorithm of RAxML [29] that is implemented in

ExaML executes a higher number of tree search iterations

(23 on 50 versus 17 on 100 partitions) for the 50 partition

dataset until convergence.

E. Cost of the Traversal Descriptor

As outlined in Section III, one major change in the

MPI communication pattern of ExaML is the absence of

traversal descriptor broadcasts. For assessing the impact of

the traversal descriptor on MPI communication patterns in

RAxML-Light, we determined the frequency of the parallel

regions that are triggered during a typical RAxML-Light

run on the 10 partition alignment. For each region, we also

determined the theoretical number of bytes that need to be

transferred (e.g., a MPI_Allreduce on 3 MPI_DOUBLE

values is counted as 3 × 8 = 24 Bytes). Thus, the amount

of data that needs to be communicated is measured inde-

pendently of the number of MPI processes used. Of course,

we cannot assume that a reduction in communication cost

is directly proportional to a reduction in execution time.

We grouped the parallel regions of RAxML-Light into four

sets related to branch length optimization, communication

of the per-site/per-partition likelihoods at the virtual root (to

obtain the overall log likelihood), broadcasting of new model

parameters (new α, GTR, or PSR values, for instance), and

broadcasting the traversal descriptor.

Table I lists the contribution of each parallel region to the

total MPI communication cost in Bytes (see above). Overall,

broadcasting the traversal descriptor accounts for between

30% up to 97% of total MPI communication cost. The com-

munication effort required for branch length optimization,

evidently, strongly depends on the branch length optimiza-

tion mode (per-partition versus joint branch length estimate).

Because this parallel region is invoked substantially more

frequently than the exchange of per-site/per-partition log

likelihood scores (reduction at the virtual root), it has a
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Figure 4: Execution times of ExaML (black) and RAxML-Light (gray) on alignments with an increasing number of partitions

under the PSR (solid) and Γ (dashed) models of rate heterogeneity. For 10, 50 and 100 partitions MPS was disabled, for

500 and 1,000 partitions MPS option was enabled.

more pronounced impact on MPI communication cost, even

under joint branch length optimization. Broadcasting new

model parameters represents a rarely invoked parallel region

(typically called between 10 and 15 times per run), where

typically large messages are exchanged among processes.

For runs with the MPS option enabled, the corresponding

values in Table I only vary negligibly.

The substantial proportion of MPI communication that

is required for communicating the traversal descriptor un-

derlines how MPI communication effort can be drastically

reduced by the the de-centralized parallelization scheme of

ExaML.

V. CONCLUSION & FUTURE WORK

We have presented and made available ExaML, a new

MPI-based code for large-scale phylogenomic inference

under maximum likelihood for distributed memory systems.

The code deploys a generally applicable new parallelization

scheme that does not require a dedicated master process

any more. On large, partitioned datasets that represent the

typical current biological use case, it runs up to 3 times

faster, than RAxML-Light which relies on the standard fork-

join approach that is, to the best of our knowledge, being

used for all current fine-grain parallel implementations of

the likelihood function.

Apart from substantially increased parallel efficiency, the

code complexity of ExaML is lower than that of RAxML-

Light, requiring less MPI invocations. Finally, the concept of

traversal descriptors (and analogous data structures as used

in the BEAGLE library) for communicating the traversal

order (the order by which conditional likelihood arrays are

computed recursively according to the Felsenstein pruning

algorithm) is not required any more. This further decreases

code complexity as well as the amount of data that needs to

be communicated.

Initially, we will review the parallelization of the PSR

model to assess if better parallel efficiency can be achieved.

While the code is optimistically named Exascale Max-

imum Likelihood, achieving actual scalability to Exascale

systems still requires a substantial amount of work. We

intend to implement mechanisms for core fault tolerance.

This should be relatively straight-forward, because the de-

centralized scheme replicates the state of the search al-

gorithm across all processes. Hence, unlike for the fork-

join approach where a failure of the master process would

be catastrophic, ExaML offers maximum state redundancy.

When one or more cores fail, the data will merely have to

be re-distributed to the remaining processes/cores such that

computations can continue.

We have already developed a binary data format for

storing input alignments and plan to use MPI parallel I/O

routines to further accelerate data (re-) distribution. We will

also address issues pertaining to energy efficiency. Since



Γ, per-partition branches Γ, joint branches PSR, per-partition branches PSR, joint branches

branch length optimization [%] 29.22 1.17 68.16 1.11
per-site/per-partition likelihoods [%] 0.25 0.40 0.51 0.39
model parameters [%] 0.33 0.52 0.99 2.78
traversal descriptor [%] 70.20 97.91 30.34 95.72

# parallel regions (in millions) 5.8 1.7 8.3 0.6

# bytes communicated (in MB) 2841 1809 1763 626

Table I: Relative contribution of parallel regions (lines 1 to 4) to the total number of bytes communicated (last line). Second

line from bottom depicts the total number of parallel regions triggered. Four parameter combinations were run on the

10-partition dataset (joint versus per-partition branch length optimization, Γ versus PSR model of rate heterogeneity).

likelihood computations are mostly memory bandwidth-

bound (they execute just a few floating point operations

per conditional likelihood array entry and then process the

next entry) we will assess if the CPU clock speed can be

reduced to match RAM access speeds without inducing run

time penalties.

We also plan to evaluate whether a hybrid MPI/PThreads

approach can be used for accelerating the performance-

critical MPI_Allreduce() calls. In a hybrid

setting the number of processes participating at an

MPI_Allreduce() will be significantly reduced. We

will also explore classical techniques such as overlapping

computation with computation which are applicable for

partitioned datasets. If a process has finished computing

the likelihood for one partition, it can already start sending

this to all other processes while computing the likelihood

of the next data partition.

Testing alternatives to MPI that may potentially be more

scalable such as, for instance, GPI (Global address space

Programming Interface; see, e.g., [30]) is also planned.

Finally, following the tradition of our lab, we will provide

user support, maintenance, and keep updating ExaML with

the help of the user community.
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