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Abstract. The computation of the phylogenetic likelihood function for reconstructing evo-
lutionary trees from molecular sequence data is both memory- and compute-intensive. Based
on our experience with the user community of RAxML, memory-shortages (as opposed to
CPU time limitations) are currently the prevalent problem regarding resource availability,
that is, lack of memory hinders large-scale biological analyses. To this end, we study the
performance of an out-of-core execution of the phylogenetic likelihood function by means of
a proof-of-concept implementation in RAxML. We find that RAM miss rates are below 10%,
even if only 5% of the required data structures are held in RAM. Moreover, we show that
our proof-of-concept implementation runs more than 5 times faster than the respective stan-
dard implementation when paging is used. The concepts presented here can be applied to all
programs that rely on the phylogenetic likelihood function and can contribute significantly
to enabling the computation of whole-genome phylogenies.

1 Introduction

The on-going accumulation of molecular sequence data that is driven by novel wet-lab tech-
niques poses new challenges regarding the design of programs for phylogenetic inference
that rely on computing the Phylogenetic Likelihood Function (PLF [2]) for reconstructing
evolutionary trees. In all popular Maximum Likelihood (ML) and Bayesian phylogenetic
inference programs, the PLF dominates both, the overall execution time as well as the
memory requirements by typically 85% - 95%.

Based on our interactions with the RAxML [6] user community, we find that, memory
shortages are increasingly becoming a problem and represent the main limiting factor for
large-scale phylogenetic analyses, especially at the genome level. At the same time, the
amount of available genomic data is growing at a faster pace than RAM sizes.

While we have already addressed potential solutions to this problem by using sin-
gle precision arithmetics [1] that can reduce memory requirements by 50% as well as by
novel algorithmic solutions [7], those approaches remain dataset-specific, that is, their
efficiency/applicability depends on the specific properties of the Multiple Sequence Align-
ment (MSA) that is used as input. Here, we introduce a generally applicable method, that
does not depend on any MSA-specific characteristics and which can also be deployed in
conjunction with the aforementioned methods to further reduce memory requirements and
speed up PLF computations.

In cases where the data structures for computing a function do not fit into the available
Random Access Memory (RAM), out-of-core execution may be significantly more efficient



than relying on paging by the Operating System (OS). This is usually the case, because
application-specific knowledge and ’page’ granularity can be deployed to more efficiently
exchange data between RAM and disk. Since the PLF is characterized by predictable
linear data accesses to vectors, as we show, PLF-based programs are well-suited to the
out-of-core paradigm.

The remainder of this paper is organized as follows: In Section 2 we briefly discuss
related work in the general area of out-of-core computing and some applications to phylo-
genetic reconstruction using Neighbor Joining which exhibits substantially different data
access patterns. In Section 3 we initially outline the necessary underlying principles of the
PLF that allow for out-of-core execution and describe the optimization of the proof-of-
concept implementation in RAxML. In the subsequent Section 4 we describe the experi-
mental setup and provide respective performance results. We conclude and discuss future
work in Section 5.

2 Related Work

The I/O bandwidth and communication between internal memory (RAM) and slower ex-
ternal devices (disks) can represent a bottleneck in large-scale applications. Methods that
are specifically designed to minimize the I/O overhead via explicit, application-specific,
data placement control and movement (e.g., between disk and RAM) are termed out-of-
core algorithms (frequently also called: External-Memory (EM) algorithms; we will hence-
forth use the terms as synonyms).

EM data structures and algorithms have already been deployed for a wide range of
problems in scientific computing including sorting, matrix multiplication, FFT computa-
tion, computational geometry, text processing, etc. Vitter provides a detailed review of
work on EM algorithms in [8].

With respect to applications in phylogenetics, EM algorithms have so far only been
applied to Neighbor-Joining (NJ) algorithms [9, 4]. NJ is fundamentally different to PLF-
based analysis (see Section 3). NJ is a clustering technique that relies on updating an O(n2)
distance matrix that comprises the pairwise distances of the n organisms for which an
evolutionary tree is reconstructed. The size of this matrix becomes prohibitive for datasets
with several thousand organisms. The data access pattern is dominated by searching for
the minimum in the O(n2) distance matrix at each step of the tree building process. We
are currently not aware of any EM algorithm for PLF computations.

3 Computing the PLF Out-of-Core

3.1 PLF Memory Requirements & Data Access Patterns

PLF memory requirements and data access patterns are radically different from those
observed for NJ algorithms (see Section 2). Instead of a distance matrix, memory require-
ments are dominated by a set of vectors, that are usually termed ancestral probability
vectors. The PLF is defined on unrooted binary trees. The n extant species/organisms of
the MSA under study are located at the tips of the tree, whereas the n − 2 inner nodes



represent extinct common ancestors. The molecular sequence data in the MSA that has
a length of s sites (alignment columns) is located at the tips of the tree. The memory re-
quirements for storing those n tip vectors of length s is not problematic, because one 32-bit
integer is sufficient to store, for instance, 8 nucleotides when ambiguous DNA character
encoding is used.

The memory requirements are dominated by the ancestral probability vectors that are
located at the ancestral nodes of the tree. Depending on the PLF implementation, at least
one such vector (a total of n − 2) will need to be stored per ancestral node. For each
alignment site i, i = 1...s, an ancestral probability vector needs to hold the data for the
probability of observing an A,C,G or T. Thus, under double precision arithmetics and for
DNA data, a total of (n − 2) · 8 · 4 · s bytes is required for the most simple evolutionary
models. If the standard (and biologically meaningful) Γ model of rate heterogeneity [10]
with 4 discrete rates is deployed, this number increases by factor of 4 ((n − 2) · 8 · 16 · s),
since we need to store 16 probabilities for each alignment site. Further, if protein data
is used that has 20 instead of 4 states, under a Γ model the memory requirements of
ancestral probability vectors increase to (n − 2) · 8 · 80 · s bytes.

The reason why the PLF is particularly well-suited for out-of-core execution is the
regularity and predictability of data access patterns. The likelihood on the tree is computed
according to the Felsenstein pruning algorithm [2]. Given an arbitrary rooting of the
tree, one conducts a post-order tree traversal to compute the likelihood. The s values in
an ancestral probability vector are computed recursively by combining the values in the
respective left and right child vectors. Thus, such a tree traversal to compute the likelihood
proceeds from the tips towards the virtual root in the tree. The ancestral probability
vectors are accessed linearly and the ancestral probability vector access pattern is given
by the tree topology.

In general terms, good I/O performance in EM algorithms is achieved by modifying
an application such as to achieve a high degree of data locality. For the PLF, the straight-
forward candidate data structure (the ’page’) for transfers between disk and RAM are
the ancestral probability vectors. In RAxML they are stored linearly in memory. The
replacement strategy and potential future pre-fetching procedure simply needs to exploit
the access pattern induced by the tree. Note that, in current ML search algorithms (finding
the optimal tree is NP-hard [5]) the tree is not entirely re-traversed for every candidate
tree that is analyzed. A large number of topological changes that are evaluated are local
changes. Thus, only a small fraction of ancestral probability vectors needs to be accessed
and updated for each tree that is analyzed.

The typical minimum HW block is 512 bytes, although some operating systems use a
larger block size of 8KB [8]. For the PLF this granularity is not an issue, since a represen-
tative ancestral probability vector is significantly larger than the block size. For instance,
consider a typical, but still comparatively small, MSA of DNA data with length s = 10, 000
and n = 10, 000 species. To compute the PLF, 9, 998 ancestral probability vectors need
to be stored. Each of these vectors is stored contiguously in memory and has a size of
10, 000 · 8 · 4 · 4 = 1, 280, 000 bytes (1.28MB) under double precision arithmetics for a Γ

model of rate heterogeneity with 4 discrete rates.



Thus, we can simply set the logical block size b (i.e., the ’page’ size) to the size of an
individual ancestral probability vector. Therefore, I/O operations can be amortized, that
is, each read or write to disk will access a contiguous number of bytes on disk that is
significantly larger than the minimum block size.

3.2 Basic Implementation

We store all ancestral probability vectors (see figure 1) that do not fit into RAM contigu-
ously in a single binary file. Although our implementation allows for storing individual
vectors in several files, we focus on single file performance, because the performance differ-
ences for the two alternatives were minimal (data not shown). We deploy an appropriate
data structure to keep track of which vectors are currently available in RAM and which
vectors are stored on disk.

Let n be the number of ancestral probability vectors and m the number of vectors
in memory, where m < n (i.e., n − m vectors will be stored on disk). Due to the way
the likelihood is computed by combining the values of two child vectors for obtaining an
ancestral probability vector (see Section 3.1), we must ensure that m ≥ 3. In other words,
the RAM must be large enough to hold at least three ancestral probability vectors. To
allow for easy assessment of various values of m with respect to n, we use a parameter f

that determines which fraction of required RAM will be made available, that is, m := f×n.
Now, let w be the number of bytes required for storing an ancestral probability vector.
This allows for enforcing the desired memory limitation to systematically analyze miss
rates, that is, our proof-of-concept implementation will only allocate m × w bytes. We
henceforth use the term slot (one may think of this as a page), to refer to a segment of
available memory (an ancestral probability vector) with a size of w bytes.
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Fig. 1. Each numbered ancestral node in the tree (left part of figure) needs to hold a vector of doubles.
These vectors are either stored on disk or in memory. A node array (middle part of figure) maintains
information on the current location (right part of figure) of each ancestral vector. The data structure also
has an integer value for each node. When the ancestral probability vector corresponding to the node is
available in RAM, this integer is used to index the corresponding RAM starting address. If the vector is
on disk, the integer defines the offset of the ancestral probability vector in the binary file.

To orchestrate data transfers and to control the location of vectors, we use the following
C data structure (unnecessary details omitted).



typedef struct

{

FILE **fs;

unsigned int num_files;

size_t slot_width;

unsigned int num_slots;

unsigned int *item_in_mem;

unsigned int num_items;

unsigned int disk_items;

nodemap *itemVector;

double *tempslot;

boolean skipReads;

replacement_strategy strategy;

}map;

The array itemVector is a list of n pointers (see Figure 1) that is indexed using the
(unique) ancestral node numbers. Each entry of type nodemap keeps track of whether the
respective ancestral vector is stored on disk or in memory. More specifically, if the ancestral
vector resides in RAM, we maintain its starting address in memory. If the vector resides
on disk, we maintain an offset value for its starting position in the binary file.

We also maintain an array of n integers (item_in_mem) that keeps track of which vector
is currently stored in which memory slot.

3.3 Replacement Strategies

In the standard implementation of RAxML, where n = m, all vectors are stored in RAM.
Whenever an ancestral probability vector is required, we simply start reading data from the
respective starting addresses for node i that is stored in the address vector xVector[i].
In the out-of-core version, we use a function getxVector(i), which returns the memory
address of the requested ancestral vector for node node i. The entire out-of-core function-
ality is transparently encapsulated in function getxVector(i). The function will initially
check, whether the requested vector is already mapped to RAM. If not, it will determine
an adequate memory slot (according to some replacement strategy, see below), and swap
the currently stored vector in that slot with the requested vector in the binary file.

A constraint for the replacement strategy is that, we must ensure that the 3 vectors
required to compute the values at the current ancestral node i (vector i and the two child
nodes j and k) reside in memory. Using the example in Figure 1, let us assume that we are
traversing the tree and that the virtual root is located in the direction of the dotted line.
When we need to compute the values for vector 3 (i), vectors 1 (j) and 2 (k) need to reside
in memory. Calling getxVector(1) will return the address of memory slot#1 (where the
vector for node 1 is already available). However, vector 2 may be located on disk. A call to
getxVector(2) will thus require a swap of vectors, but slots #1 and #3 must be excluded
(pinned to memory) from the possible swap candidates, since the values of vectors 1 and
3 are required for the immediate computation. For this reason, getxVector() has two
additional parameters that specify which inner nodes must be pinned to memory and can
not be swapped out.



Even if we optimize data transfer performance between disk and RAM at a technical
level, accessing data on disk has a significantly higher latency than accessing data in RAM.
Therefore, it is important to minimize the number of I/O accesses (number of ancestral
probability vector swaps).

As already mentioned, a vector is always either stored on disk or in RAM. Whenever
RAxML tries to access a vector that resides on disk via getxVector(), we need to chose a
vector that resides in RAM, and then swap the vectors. Therefore, we require a replacement
strategy, that is conceptually similar to cache line replacement or page swap strategies.

To conduct a thorough assessment, we have implemented and tested the following four
replacement strategies:

Random The vector to be replaced is chosen at random with minimum overhead (one
call to a random number generator).

Least Recently Used (LRU) The vector to be replaced is the one that has been ac-
cessed the furthest back in time. This requires a list of n time-stamps as well as an
O(log(n)) binary search for the oldest time-stamp. Note the use of n rather than m,
because we only search among time stamps of vectors that are currently in RAM.

Least Frequently Used (LFU) The vector to be replaced is the one which has been
accessed the least number of times. This requires maintaining a list of m entries con-
taining the access frequency and an O(log(n)) binary search for the smallest value.

Topological The vector to be replaced is the most distant node (in terms of number of
nodes along the path in the tree) from the node/vector currently being requested. The
node distance between a pair of nodes in a binary tree is defined as the number of
nodes along the unique path that connects them.

The rationale for the topological replacement strategy is that, due to the locality of the
tree search and the computations, we expect the most distant node/vector to be accessed
again the furthest ahead in the future.

3.4 Reducing the Number of Swaps

So far, our EM algorithm has been integrated into RAxML in a fully transparent way. We
have shown that it is possible to modify the program and any PLF-based program for that
matter, such that the complexity is entirely encapsulated by a function call that returns
the address of an ancestral probability vector. However, it is possible to further reduce
the number of I/O operations by exploring some implementation-specific characteristics
of RAxML, that can also be deployed analogously in other PLF-based implementations.

For each global or local traversal (re-computation of a part or of all ancestral probability
vectors) of the tree, we know, a priori (based on the tree structure), that some of the vectors
that will be be swapped into RAM will be completely overwritten, that is, they will be
used in write-only mode during the first access. Thus, whenever we swap in a vector from
file, of which we know that it will initially be used for writing, we can omit reading its
current contents from file. We denote this technique as read skipping and implement it as
follows: We introduce a flag in our EM bookkeeping data structure that indicates whether
read skipping can be applied or not, that is whether a vector will be written during the



first access. We instrument the search algorithm such that, when the global or local tree
traversal order is determined (this is done prior to the actual likelihood computations),
the flag is set appropriately.

4 Experimental Setup & Results

4.1 Evaluation of replacement strategies

Assessing the correctness of our implementation is straight-forward since this only requires
comparing the log likelihood scores obtained from tree searches using the standard RAxML
version and the out-of-core version.

Hence, we initially focus on analyzing the performance (vector miss rate) of our re-
placement strategies and the impact of the read skipping technique as a function of f

(proportion of vectors residing in RAM).

To evaluate the replacement strategies, we used 2 real-world biological datasets with
1288 species (DNA data, MSA length s := 1200 sites/columns), and 1908 species (DNA
data, MSA length: s := 1424 sites/columns) respectively. Tree searches were executed
under the Γ model of rate heterogeneity with four discrete rates. We used the SSE3-
based [1] sequential version of RAxML v7.2.8. The out-of-core version of RAxML and
all test datasets are available for download at http://wwwkramer.in.tum.de/exelixis/
src_and_datasets.tar.gz.

For each of the four replacement strategies, we performed three different runs for the
out-of-core version with f := 0.25 (25% of vectors memory-mapped), f := 0.50 (50% of
vectors memory-mapped), and f := 0.75 (75% of vectors memory-mapped).

Given a fixed starting tree, RAxML is deterministic, that is, regardless of f and the
selected replacement strategy, the resulting tree (and log likelihood score) must always be
identical to the tree returned by the standard RAxML implementation. For each run, we
verified that the standard version and the out-of-core version produced exactly the same
results.

This part of our computational experiments was conducted on a single core of an
unloaded multi-core system (Intel Xeon E5540 CPU running at 2.53GHz with 36 GB of
RAM). On this system, the amount of available RAM was sufficient to hold all vectors
in memory for the two test-datasets, both for the standard implementation or by using
memory-mapped I/O for the out-of-core version.

We found that, with the exception of the LFU strategy, even mapping only 25% of the
probability vectors to memory results in miss rates under 10%. As expected, miss rates
converge to zero as the fraction of available RAM is increased (see Figure 2). In the trivial
case (f := 1.0), the miss rate is zero, since all vectors reside in RAM. The Random, LRU,
and Topological strategies perform almost equally well. Thus, one would prefer the random
or LRU strategy over the topological strategy because it requires a larger computational
overhead for determining the replacement candidate.

In Figure 3, we show the positive effect of the read skipping technique for analogous
runs on the same dataset with 1288 species. Here, we quantify the fraction of ancestral
vector reads from disk that are actually carried out per ancestral vector access. Note that,
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Fig. 2. Vector miss rates for different replacement strategies using a dataset with 1,288 species. We allo-
cated 25%, 50% and 75% of the required memory for storing ancestral probability vectors in RAM. Every
time a vector is not available in RAM, we count a miss.
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Fig. 3. Effect of Read skipping: We count the fraction of vector accesses for which a vector needs to be
actually read from file using the same parameters as in Figure 2. Without the read skipping strategy the
read rate is equivalent to the miss rate.



without the read skipping technique this fraction would be identical to the miss rate in
Figure 2. Thus, by deploying this technique, we can omit more than 50% of all vector read
operations and hence more than 25% of all I/O operations.

The plots for the dataset with 1908 species are analogous (with slightly better miss
rates) to those presented in Figures 2 and 3 and are available as on-line supplement at
http://wwwkramer.in.tum.de/exelixis/supplementOOC.pdf.

4.2 Miss Rates as a Function of f

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

M
is

s 
ra

te
 (

%
 o

f t
ot

al
 v

ec
to

r 
re

qu
es

ts
)

Fraction f of RAM allocated

Miss rate for dataset with 1288 species

RAND

Fig. 4. Miss rates for several runs using the random replacement strategy on the dataset with 1288 species.
The fraction f of memory-mapped ancestral probability vectors was divided by two for each run.

To more thoroughly assess the impact of f on the miss rate, we conducted additional
experiments for different values of f using a random replacement strategy on the test
dataset with 1288 taxa. The fraction f was subsequently divided by two. The smallest f

value we tested corresponds to only five ancestral probability vector slots in RAM.
Figure 4 depicts the increase in miss rates for decreasing f . The most extreme case

with only five RAM slots, still exhibits a comparatively low miss rate of 20%. This is due
to the good locality regarding vector usage in the RAxML algorithm. One reason for this
behavior, that is inherent to ML programs, are branch length optimization procedures.
Branch length optimization is typically implemented via a Newton-Raphson procedure,
that iterates over a single branch of the tree. Thus, only memory accesses to the same two



vectors (located at either end of the branch) are required in this phase which accounts
for approximately 20-30% of overall execution time. In RAxML, access locality is also
achieved by —in most cases— only re-optimizing three branch lengths after a change of
the tree topology during the tree search (Lazy SPR technique; see [6]).

4.3 Real Test Case

Finally, we conducted realistic tests by analyzing large data sets on a system with only
2GB of RAM. Here, we compare execution times of the standard algorithm (potentially
using paging) with the out-of-core performance.

For these tests, we generated large simulated DNA datasets using INDELible [3]. We
intentionally generated datasets, whose memory requirements for ancestral probability
vectors (see Figure 5) exceed the main memory available on the test system (Intel i5
running at 2.53 GHz with 2GB RAM configured with 36 GB of swap space). To achieve
this, we deployed INDELible to simulate DNA data on a tree with 8192 species and
varying alignment lengths s. We chose values of s such that, the simulated datasets had
(ancestral probability) memory requirements ranging between 1GB and 32GB. Because
of the prohibitive execution times for full tree searches on such large datasets, we did
not execute the standard RAxML search algorithm. Instead, we executed a subset of the
PLF as implemented in RAxML (-f z option in the modified code available at: http:
//wwwkramer.in.tum.de/exelixis/src_and_datasets.tar.gz) by simply reading in a
given, fixed, tree topology and computing five full tree traversals (recomputing all ancestral
probability vectors in the tree five times) according to the Felsenstein pruning algorithm.
This represents a worst-case analysis, since full tree traversals exhibit the smallest degree
of vector locality. Full tree traversals are required to optimize likelihood model parameters
such as the α shape parameter of the Γ model of rate heterogeneity.

The out-of-core runs were invoked with the -L 1,000,000,000 flag to force the pro-
gram to use less than 1GB of RAM for ancestral probability vectors.

Figure 5 demonstrates that the execution times of the out-of-core implementation scale
well with dataset size (ancestral probability vector space requirements). As expected,
the standard approach is faster for datasets that still fit into RAM, while it is more
than five times slower for the largest dataset with 32GB. For ancestral vector memory
footprints between 2GB and 32GB, the run-time performance gap between the out-of-
core implementation and the standard version is increasing, since the standard algorithm
starts using virtual memory (e.g., then number of page faults increases from 346,861
for 2GB to 902,489 for 5GB). Note that, for the out-of-core runs, we only use 1GB of
RAM, that is, better performance can be achieved by slightly increasing the value for
-L. Thus, under memory limitations and given the runtimes in Figure 5 using the out-
of-core approach is significantly faster than the standard approach for computing the
likelihood on large datasets. Thus, given enough execution time and disk space, the out-
of-core version can be deployed to essentially infer trees on datasets of arbitrary size.
While the increase in execution times in the out-of-core implementation is still large, we
are confident that the miss rate and miss penalty can be further improved by low-level
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I/O performance optimization and developing further techniques similar to read skipping

by using topological information.

5 Conclusion & Future Work

We have presented the first implementation of the PLF that relies on out-of-core execu-
tion for accommodating the large memory requirements of ancestral probability vectors.
Accommodating such huge memory requirements is necessary for analyzing emerging phy-
logenomic datasets.

We find that, given the locality of ancestral probability vector access patterns, miss
rates are very low, even if the amount of available RAM is limited to a small fraction
of the actually required memory. We demonstrate that our out-of-core implementation,
performs substantially better than the standard implementation that relies on paging. The
concepts developed here can be applied to all PLF-based programs (ML and Bayesian)
and are not limited to interactions between RAM and the disk. They can also be deployed
for exchanging vectors between the relatively small memory of an accelerator card, a GPU
or FPGA for instance, and the main memory of a general-purpose CPU. One may also
envision a three-layer architecture, where ancestral probability vectors partially reside on
disk, in RAM, or the memory of an accelerator card.



Future work will address these issues, but we will also explore two additional directions:
We will assess if pre-fetching can be deployed by means of a prefetch thread and we will
explore the behavior of dedicated parallel file-systems in combination with a fine-grain
MPI version of RAxML.
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