
RAxML-Light v1.0.1 Manual

Alexandros Stamatakis
Scientific Computing Group

Heidelberg Institute for Theoretical Studies
Alexandros.Stamatakis@h-its.org

What is RAxML-Light?

RAxML-Light is a strapped-down light-weight version of RAxML for inference of very large trees. It
can only execute some very basic functions and is intended for computer-savvy users that can
write little perl-scripts and have used queue submission scripts for clusters.
RAxML-Light only implements the CAT model of rate heterogeneity for DNA and protein data.
However, issues with CAT-based branch lengths have been fixed, since the per-site rate
categories are re-adjusted in such a way that the mean substitution rate is 1.0. Extensive tests
have shown that the CAT-based branch lengths are highly correlated with GAMMA-based branch
lengths (pearson correlation coefficient > 0.99), albeit the absolute values may be different.
Remember that, branch lengths on Maximum Likelihood (ML) trees are always just relative branch
lengths.

What's new in RAxML-Light?

RAxML-Light has two basic new features that allow for reconstruction of huge trees.
1. It offers a fine-grain parallelization of the likelihood function with Pthreads for shared

memory architectures and MPI (Message Passing Interface) for distributed memory
architectures with low latency interconnects (such as Infiniband or Myrinet or, e.g., the
dedicated interconnects on the IBM BlueGene systems).

2. It offers a light-weight checkpointing and restart capability. That is, typical HPC clusters
usually have execution time limits of 24 hours, 48 hours or at best 1 week. This is
problematic because inferences on large trees usually take much longer. Hence, a method
to save the state of the search and re-start the program is required. This is directly
implemented in software within RAxML-Light to save time when writing checkpoints and re-
starting the program.

How do I compile RAxML-Light?

The distribution comes with three Makefiles for the sequential, Pthreads, and MPI-based versions.
All versions use SSE3 SIMD (Single Instruction Multiple Data) instructions which are offered by all
more recent AMD and Intel x86 architectures. The default compiler is gcc, but you may experiment
with Intel icc or the Portland PGI compiler (although those compilers have not been tested by me).
The parallel MPI version works with Intel icc and gcc and so far I have tested the MVAPICH2 (gcc
and icc) and OpenMPI (gcc) compilers.

To compile the sequential version, type:

make -f Makefile.SSE3.gcc

This will generate an executable called raxmlLight. If you want to compile the Pthreads version
next, first type “rm *.o” in your terminal to remove the object files generated for compiling and
linking the sequential program and type:

make -f Makefile.SSE3.PTHREADS.gcc

This will produce an executable called raxmlLight-Pthreads

mailto:Alexandros.Stamatakis@h-its.org

Then, to compile the MPI version, first type “rm *.o” again and then type:

make -f Makefile.SSE3.MPI

which will generate an executable called raxmlLight-MPI. For this you will need to have a MPI
compiler (called mpicc) installed on your system/cluster. If you don't know what a MPI compiler is,
just talk to your local Geek. For testing purposes under Ubuntu Linux, it is probably easiest to
install OpenMPI.

What can RAxML-Light compute?

As already mentioned, RAxML-Light is a strapped-down version of the standard RAxML
distribution (currently version 7.2.8). It is meant to be used in combination with standard RAxML for
analyzing very large trees. As such, the only thing RAxML-Light can do is to infer trees under
Maximum Likelihood, given a pre-computed (e.g., with standard RAxML) starting tree or checkpoint
file. It can not do bootstraps (this requires scripting), searches on multiple trees, compute starting
trees on its own etc.

Here are the RAxML-Light program options, many are similar to the standard RAxML options.
The new options are highlithed in red and explained in more detail:

[raxmlLight|raxmlLight-PTHREADS|raxmlLight-MPI]
-s sequenceFileName -n outputFileName -m substitutionModel -t userStartingTree|-R
checkpointFileName

Unlike in standard RAxML, the user has to provide a comprehensive (containing all taxa)
bifurcating starting tree to RAxML-Light, if no checkpoint file is specified via -R.

 [-c numberOfCategories]
 [-e likelihoodEpsilon]
 [-f d|o] [-F]
 [-h]
 [-i initialRearrangementSetting]
 [-M]
 [-o outGroupName1[,outGroupName2[,...]]]
 [-P proteinModel]
 [-q multipleModelFileName]
 [-R binaryCheckpointFile]
 [-T numberOfThreads] [-v] [-w outputDirectory]

 -c Specify number of distinct rate catgories for RAxML when modelOfEvolution
 is set to GTRCAT
 Individual per-site rates are categorized into numberOfCategories rate
 categories to accelerate computations.

 DEFAULT: 25

 -e set model optimization precision in log likelihood units for final
 optimization of tree topology under GTRCAT

 DEFAULT: 0.1

 -f select algorithm:

 "-f d": new rapid hill-climbing

 DEFAULT: ON

 "-f o": old and slower rapid hill-climbing without heuristic cutoff

 DEFAULT for "-f": new rapid hill climbing

 -h Display this help message.

 -i Initial rearrangement setting for the subsequent application of topological
 changes phase

 -m Model of Nucleotide or Amino Acid Substitution:

NUCLEOTIDES:

"-m GTRCAT": GTR + Optimization of substitution rates + Optimization of site-specific
evolutionary rates which are categorized into numberOfCategories distinct rate categories
for greater computational efficiency.

AMINO ACIDS:

"-m PROTCATmatrixName[F]": specified AA matrix + Optimization of substitution rates +
Optimization of site-specific evolutionary rates which are categorized into
numberOfCategories distinct rate categories for greater computational efficiency.

Available AA substitution models: DAYHOFF, DCMUT, JTT, MTREV, WAG, RTREV,
CPREV, VT, BLOSUM62, MTMAM, LG, MTART, MTZOA, PMB, HIVB, HIVW, JTTDCMUT,
FLU, GTR .
With the optional "F" appendix you can specify if you want to use empirical base
frequencies
Please note that for partitioned models you can specify the per-gene/per-partition AA model
in the mixed model file (see standard RAxML manual for details). Also note that, if you
estimate AA GTR parameters on a partitioned dataset, they will be linked (estimated jointly)
across all partitions to avoid over-parametrization

 -M Switch on estimation of individual per-partition branch lengths. Only has effect when used
in combination with "-q" Branch lengths for individual partitions will be printed to
separate files . A weighted average of the branch lengths is computed by using the
respective partition lengths

 DEFAULT: OFF

 -n Specifies the name of the output file.

 -o Specify the name of a single outgrpoup or a comma-separated list of outgroups, eg "-o
Rat" or "-o Rat,Mouse", in case that multiple outgroups are not monophyletic the first
name in the list will be selected as outgroup, don't leave spaces between taxon
names!

 -P Specify the file name of a user-defined AA (Protein) substitution model. This file must
contain 420 entries, the first 400 being the AA substitution rates (this must be a
symmetric matrix) and the last 20 are the empirical base frequencies

 -q Specify the file name which contains the assignment of models to alignment
 partitions for multiple models of substitution. For the syntax of this file
 please consult the standard RAxML manual.

 -R Read in a binary checkpoint file called RAxML_binaryCheckpoint.RUN_ID_number .

This is a new option in RAxML-Light, instead of specifying a comprehensive starting tree
via -t, you can use this option to restart a large-scale RAxML tree search that was
interrupted, e.g., because you have used up your queue time. During the course of
execution, RAxML will be writing files called RaxML_binaryCheckpoint.RUN_ID_number,
where RUN_ID is the run name you specified viy “-n RUN_ID” and “number” is simply the
number of the checkpoint. Evidently, you would like to re-start RAxML-Light from the most
recent checkpoint that was written.

 -s Specify the name of the alignment data file in PHYLIP format

 -t Specify a user starting tree file name in Newick format .

If you don't specify -t, make sure that you specify -R, i.e., restart from a checkpoint,
otherwise, the program will crash!

 -T PTHREADS VERSION ONLY! Specify the number of threads you want to run.
 Make sure to set "-T" to at most the number of CPUs you have on your machine,
 otherwise, there will be a huge performance decrease!

 -v Display version information

 -w FULL (!) path to the directory into which RAxML shall write its output files

 DEFAULT: current directory

Usage Examples

Suppose we want to compute a ML tree on dataset dna.phy (included in this distribution).
Initially, we will need to generate a starting tree, for this we can use, e.g., standard RAxML to
compute a randomized stepwise addition parsimony tree:

./raxmlHPC-SSE3 -y -m GTRCAT -s dna.phy -p 12345 -n startingTree

This will just generate a parsimony starting tree (using the specified random number seed 12345)
called RAxML_parsimonyTree.startingTree.

Now, we can invoke raxmlLight to do a tree search on this tree by typing:

./raxmlLight -m GTRCAT -s dna.phy -t RaxML_parsimonyTree.startingTree -
n TreeInference

The terminal output will look like this:

This is RAxML-Light version 1.0.0 released by Alexandros Stamatakis in February 2011.

Alignment has 358 distinct alignment patterns

Proportion of gaps and completely undetermined characters in this alignment: 2.21%

RAxML rapid hill-climbing mode

Using 1 distinct models/data partitions with joint branch length optimization

All free model parameters will be estimated by RAxML
ML estimate of 25 per site rate categories

Partition: 0
Alignment Patterns: 358
Name: No Name Provided
DataType: DNA
Substitution Matrix: GTR

RAxML was called as follows:

./raxmlLight -m GTRCAT -s dna.phy -t RAxML_parsimonyTree.startingTree -n TreeInference

Checkpoint written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_binaryCheckpoint.TreeInference_0 likelihood: -4229.582317

Checkpoint written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_binaryCheckpoint.TreeInference_1 likelihood: -4229.582317

Checkpoint written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_binaryCheckpoint.TreeInference_2 likelihood: -3992.577273

Checkpoint written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_binaryCheckpoint.TreeInference_3 likelihood: -3991.211171

Checkpoint written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_binaryCheckpoint.TreeInference_4 likelihood: -3991.196119

Checkpoint written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_binaryCheckpoint.TreeInference_5 likelihood: -3991.193810

Checkpoint written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_binaryCheckpoint.TreeInference_6 likelihood: -3991.193810

Checkpoint written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_binaryCheckpoint.TreeInference_7 likelihood: -3991.193810

Checkpoint written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_binaryCheckpoint.TreeInference_8 likelihood: -3991.193810

Overall Time for 1 Inference 1.772864
Likelihood : -3991.193810

Final tree written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_result.TreeInference
Execution Log File written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_log.TreeInference
Execution information file written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_info.TreeInference

The interesting part here are the checkpoint files that are written by RAxML-Light. Suppose that
our program is interrupted after the second checkpoint:
RAxML_binaryCheckpoint.TreeInference_1 we could restart the program like this:

./raxmlLight -m GTRCAT -s dna.phy -R
RAxML_binaryCheckpoint.TreeInference_1 -n TreeInference_1

and get the following terminal output:

This is RAxML-Light version 1.0.0 released by Alexandros Stamatakis in February 2011.

Alignment has 358 distinct alignment patterns

Proportion of gaps and completely undetermined characters in this alignment: 2.21%

RAxML rapid hill-climbing mode

Using 1 distinct models/data partitions with joint branch length optimization

All free model parameters will be estimated by RAxML
ML estimate of 25 per site rate categories

Partition: 0
Alignment Patterns: 358
Name: No Name Provided
DataType: DNA
Substitution Matrix: GTR

RAxML was called as follows:

./raxmlLight -m GTRCAT -s dna.phy -R RAxML_binaryCheckpoint.TreeInference_1 -n TreeInference_1

RAxML Restart with likelihood: -4229.58231661322406580438837409019470214843750000000000

Checkpoint written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_binaryCheckpoint.TreeInference_1_0 likelihood: -4229.582317

Checkpoint written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_binaryCheckpoint.TreeInference_1_1 likelihood: -3992.577273

Checkpoint written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_binaryCheckpoint.TreeInference_1_2 likelihood: -3992.577273

Checkpoint written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_binaryCheckpoint.TreeInference_1_3 likelihood: -3991.211171

Checkpoint written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_binaryCheckpoint.TreeInference_1_4 likelihood: -3991.196119

Checkpoint written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_binaryCheckpoint.TreeInference_1_5 likelihood: -3991.193810

Checkpoint written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_binaryCheckpoint.TreeInference_1_6 likelihood: -3991.193810

Checkpoint written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_binaryCheckpoint.TreeInference_1_7 likelihood: -3991.193810

Checkpoint written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_binaryCheckpoint.TreeInference_1_8 likelihood: -3991.193810

Overall Time for 1 Inference 1.521070
Likelihood : -3991.193810

Parsimony starting tree written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_parsimonyTree.TreeInference_1
Final tree written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_result.TreeInference_1
Execution Log File written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_log.TreeInference_1
Execution information file written to: /home/stamatak/Desktop/GIT/RAxML-LIGHT/RAxML_info.TreeInference_1

Running and restarting the parallel versions of RAxML-Light works in exactly the same way, e.g.,

./raxmlLight-PTHREADS -T 2 -m GTRCAT -s dna.phy -t
RAxML_parsimonyTree.startingTree -n TreeInference

will execute the Pthreads version of RAxML-Light with two threads. Never ever run more threads
than you have cores available on your system! This will lead to serious performance degradation!
For the MPI version this could look like this using the OpenMPI MPI implementation (note that MPI
is just an interface specification and there exist various implementations of MPI such as MVAPICH,
Intel MPI, OpenMPI etc.).

mpirun.openmpi -np 2 ./raxmlLight-MPI -T 2 -m GTRCAT -s dna.phy -t
RAxML_parsimonyTree.startingTree -n TreeInference

This will start two MPI procsesses that will work simultaneously on computing the likelihood. Also
note that, you should not oversubscribe your nodes, i.e., do not start more processes than there
are physical cores available, because, once again, you will get a performance degradation. Also
note that, the first part of this command “mpirun.openmpi -np 2” is installation-specific, that is, it
depends on your local cluster and MPI installation. Here you should talk to the cluster admins, in
order to figure out how to best run this.

In general, note that, RAxML-Light writes binary checkpoints, thus you can typically not run RAxML
for some time on one computer architecture and then restart it on another, different one. The
general assumption is that RAxML-Light will be re-started on the same processor type it was
stopped before.

Frequently Asked Questions

Q: If I have a large shared-memory node, should I use MPI or pthreads?
A: It is probably better to use the MPI version, since the collective communication routines as
implemented in MPI are better optimized than the Pthreads collective communication routines I
implemented for the RAxML Pthreads version.

Q: How can I do bootstraps with RAxML-Light?
A: Here, you will once again have to use the standard RAxML version first and do some scripting.
Initially you should use standard RAxML to generate bootstrap replicate files, by typing e.g.:

./raxmlHPC-SSE3 -# 100 -b 12345 -f j -m GTRCAT -s dna.phy -n REPS

This will generate 100 BS replicates as indicated in the terminal output:

Printing replicate 0 to /home/stamatak/Desktop/GIT/RAxML-LIGHT/dna.phy.BS0
Printing replicate 1 to /home/stamatak/Desktop/GIT/RAxML-LIGHT/dna.phy.BS1
Printing replicate 2 to /home/stamatak/Desktop/GIT/RAxML-LIGHT/dna.phy.BS2
Printing replicate 3 to /home/stamatak/Desktop/GIT/RAxML-LIGHT/dna.phy.BS3
......
Printing replicate 98 to /home/stamatak/Desktop/GIT/RAxML-LIGHT/dna.phy.BS98
Printing replicate 99 to /home/stamatak/Desktop/GIT/RAxML-LIGHT/dna.phy.BS99

Then, you would use standard RAxML again to compute parsimony starting trees for each replicate
e.g., via a respective perl script:

#base name of bootstrap replicate file names
$bsname = "dna.phy.BS";

#parsimony random number seed range
$range = 1000000000;

lopp over 100 bootstrap replicates
for($i = 0; $i < 100; $i++)
 {

 # generate a random number seed for the randomized stepwise addition parsimony tree building process
 $random_number = int(rand($range));

 # build the command line string
 $command = "./raxmlHPC-SSE3 -y -s ".$bsname.$i." -m GTRCAT-n T".$i." -p ".$random_number." \n";

 # execute the command
 system($command);
}

This will generate 100 parsimony starting trees called RAxML_parsimonyTree.T0
RAxML_parsimonyTree.T99. Note that, it won't make much sense to use the Pthreads version
of standard RAxML to compute parsimony starting trees, because (i) it's fast (ii) the parallel

efficiency of the Pthreads-based parsimony implementation sucks. Once you have the starting
trees you can then launch, e.g., the Pthreads version of RAxML-Light (this is an example perl script
that work son our cluster at HITS) as follows to compute the 100 Bootstrap trees:

#base name of bootstrap replicate file names
$bsname = "dna.phy.BS";

for($i = 0; $i < 100; $i++)
 {
 #open a queue submission file that we will populate with commands
 open (F, " >bsinf".$i);

 # the stuff below is cluster and installation-specific
 print F "#!/bin/bash\n";

 print F "#\$ -S /bin/bash\n";

 print F "#\$ -cwd\n";

 print F "#\$ -j y\n";

 print F "#\$ -pe impi48 48\n";

 print F "#\$ -q test-48.q\n";

 print F "# source module\n";

 print F ". /etc/profile.d/modules.sh\n";

 print F "module load sge gcc/4.3.4\n";

 # here we assemble the command line that will execute the Pthreads version of raxmlLight on
 # shared-memory nodes with 48 cores and 48 threads
 printf F "./raxmlLight-PTHREADS -T 48 -s ".$bsname.$i." -m GTRCAT -t RAxML_parsimonyTree.T".$i." -n BINF_".$i."\n";

 # done editing the file, now just close it
 close(F);

 # now we can automatically submit the job to the queing system :-)
 system("qsub bsinf".$i);
}

The above script will automatically submit 100 tree inference jobs using raxmlLight-PTHREADS to
the batch queuing system on our cluster here at HITS. With some slight modifications, the above
script should work on most typical cluster installations.

Q: Why is there no GAMMA model of rate heterogeneity available?
A: For very large trees in terms of number of taxa (above 30,000 taxa approximately) it seems that
there are some fundemantal numerical issues with the GAMMA model of rate heterogeneity, which
do not allow for computing GAMMA-based likelihood scores using the RAxML likelihood
implementation. This probably also holds for most other ML and Bayesian programs.

Q: What is a large dataset that would be appropriate for RAxML-Light?
A: Large datasets are either many-taxon datasets with more than 10,000 taxa and a couple of
genes (e.g., 10-20 genes) or datasets with a couple of hundred taxa and 1000 genes.

Q: How do I cite RAxML-Light?
A: For the time being just cite it as “RAxML-Light version 1.0.0 by Alexandros Stamatakis”

Q: Under which licence is RAxML-Light available?
A: It's available under GNU GPL version 3 or later.

Q: How does the MPI version work?
A: The MPI version just works in an analogous way as the Pthreads version, i.e., multiple MPI
processes (in analogy to multiple threads) work concurrently on computing the likelihood on the
same underlying tree topology. Instead of communicating and synchronizing computations via
shared memory areas, the processes communicate using the Message Passing Interface over
some low latency network. A low latency network is required because the processes need to
communicate with each other several thousand times per second of execution time. However, they
do not exchange much data with each other, so network bandwidth is not a problem. The MPI
version is a de novo implementation of the fine-grain MPI parallelization concept for the
phylogenetic likelihood function that was originally presented in this paper here [Ott2007]:
http://wwwkramer.in.tum.de/exelixis/pubs/SC2007.pdf

http://wwwkramer.in.tum.de/exelixis/pubs/SC2007.pdf

[Ott2007] M. Ott, J. Zola, S. Aluru, A. Stamatakis: “Large-scale Maximum Likelihood-based
Phylogenetic Analysis on the IBM BlueGene/L”. In Proceedings of IEEE/ACM
Supercomputing (SC2007) conference, Reno, Nevada, November 2007.

