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Abstract. In this report, we examine the paper Using Parsimony-Guided
Tree Proposals to Accelerate Convergence in Bayesian Phylogenetic In-
ference published in 2020 by Chi Zhang, John P. Huelsenbeck and Fred-
eric Ronquist [I4]. They propose improved topological moves as proposal
mechanisms for the Metropolis-Hastings-Algorithm. We introduce these
moves and retrace the ideas behind them. Furthermore, we consider the
experiments the authors carried out on empirical data. Additionally, we
analyze the promising results presented in the publication.
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1 Introduction

Working on the tree inference problem in phylogenetics, the Markov chain Monte
Carlo (MCMC) method realized in the Metropolis-Hastings-Algorithm [10] [4]
is a common approach. The paper Using Parsimony-Guided Tree Proposals to
Accelerate Convergence in Bayesian Phylogenetic Inference [14] published by
Zhang et al. proposes improvements to it. The MCMC method’s aim is to find
a set of assignments for 6 := {tree topology, branch lengths, model parameters}
overall admitting a high posterior probability f(6 | A) for the given alignment
A. Samples are drawn iteratively to approximate the posterior. The next sample
point ;41 is determined based on the current sample point 6; using a Markov
chain with a proposal distribution Q(6;41 |6;). This distribution is composed
of several proposal mechanisms such as the topological moves introduced in
Section [2] To decide whether a proposed data point should get sampled next,
the acceptance ratio R is determined (see Equation [1)) and then the proposal is
accepted with probability p := min(1, R).
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In the formula, f(A|6;+1)/f(A|6;) denotes the ratio of the data points’
likelihoods, computed as introduced in [3]. f(6;+1)/f(6;) is the ratio of the prior
probabilities and the last factor Q(6; ’9i+1)/Q(9i+1 |¢91) is known as Hastings
ratio [4].

Both the convergence speed and the quality of the results depend on the pro-
posal mechanisms used. Hence, this part of the method admits a high potential
for optimizations. Considering the acceptance ratio (see Equation , we observe
that for Q(6;41 | 0;)=f(A | 0i41)- f(0;41), R =1 always holds which means that
every proposal gets accepted. Zhang et al. propose to approximate the likelihoods
using parsimony as introduced in [3]. The parsimony score Par(7T') of a tree T
can be computed significantly faster than its likelihood [1I] which the authors
exploit to develop improved proposal mechanisms. They focus on the topological
moves Subtree-Pruning and Regrafting (SPR), and Tree Bisection and Recon-
nection (TBR) which we introduce in Section [2| The parsimony-guided versions
of these moves we subsequently consider in Section

Zhang et al. implemented the introduced move types in the framework Mr-
Bayes [7] [12] and evaluated them on different datasets (see Section[d]). Although
there exist links between parsimony and probabilistic phylogenetics [6] [3], likeli-
hood and parsimony are still different metrics, hence mismatches occur. In their
experiments, the authors were able to obtain promising results indicating that
the possibility to generate a preview predominates these mismatches (see Section
. Nevertheless, there are some points which can be discussed further, some we
finally mention in Section [6]

2 Topological Moves

In the following, we explain the topological moves Subtree Pruning and Regraft-
ing (SPR) and Tree Bisection and Reconnection (TBR) as introduced in [3].

Applying a SPR move to a phylogenetic tree, we prune a subtree out of it
and reinsert this subtree at some other point. The detailed procedure is illus-
trated in Figure[I] For using SPR in the MCMC method, the choice of r needs to
be randomized. For this purpose, the extending SPR (eSPR) is introduced in [9].

For a TBR move, we start by randomly selecting a branch a from our phy-
logenetic tree. In each of the subtrees next to a, a pendant branch ¢, g2 respec-
tively, is picked. Subsequently, the three branches a, g1, and g» are cut out of
the tree. This produces two disconnected subtrees. In each of them, we choose
a reconnection point 71, 7 respectively. Next, the subtrees are joined again by
inserting the pendant branches next to the reconnection points and like this a
new tree topology is obtained. As a proposal mechanism for the MCMC method,
extending TBR (¢TBR) is used [9].
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Fig. 1: Subtree-Pruning and Regrafting (SPR) a) Initial tree topology. A branch
a is selected at random, with A we label a subtree next to it. In the other subtree,
a branch r is selected for regrafting. By ¢ we denote the pendant branch which is
the branch next to a on the path to r. b) Together with the branches a and ¢, the
subtree A is pruned out of the tree c) Resulting tree topology after reinserting
the pruned subtree next to r.

3 Parsimony-Guided Moves

Zhang et al. introduce parsimony-guided versions of SPR and TBR. Parsimony-
guided SPR (pSPR) uses parsimony to determine the regrafting point. Thus,
they consider the topology of the phylogenetic tree after the pruning of the
subtree A together with the branches a and ¢q. Let B be the remaining subtree
and E(B) its branch set. The branch adjacent to a which is left back, is denoted

by b (see Figure [2)).

P
Fig. 2: Tree topology after pruning the subtree

q
o A+ a+q at SPR. b denotes the branch adjacent
b to a which is left back. All branches in B except

b are considered as potential regrafting points.

All branches in E(B) except b are taken into account as potential regrafting
points. b is excluded because it would produce the same tree topology as before.
For each branch ¢ in E(B) \ b, let T; denote the tree which is obtained, when
choosing ¢ for regrafting. Further, let the score S; be defined as:

S; = Par(T;) — (Par(A + a + q) + Par(B))) (2)
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Determining these scores for all relevant branches is computationally conve-
nient as it does not require a separate parsimony calculation for every branch. In-
stead, Zhang et al. once compute the intermediate results for the root of A4+a-+q
and for the inner nodes of B. Subsequently, they can finish the computations for
every branch by considering the involved nodes only. (For details concerning
parsimony computation see [3]).

Regarding the choice of the regrafting point r, the authors compute a weight
w; = pgsi for every relevant branch. € is the so called wrap factor. It can be
adapted to adjust the influence of the parsimony score on the weights. In their
implementation, the authors used € = 0.5. p; is the base factor. For its choice,
Zhang et al. introduce different schemes, pSPR; and pSPRs. The probability for
i to get proposed for regrafting is determined as w;/ >, p /b Wi

Applying pSPRy, the authors set p; = e~ ! for every branch. For pSPRs, they
introduce a more complex estimation. Let ¢ be the length of the sequences in the
phylogenetic tree. s; denotes the parsimony score associated with the branch .
Further, let = and y be the sequences associated with the nodes incident to i. In
the case of a tip node, the respective sequence can be inferred directly from the
alignment. For inner nodes, we consider the sequences constructed during parsi-
mony computation (see [3]). In order to understand the idea behind pSPRy, we
ignore the ambiguous characters these sequences can contain. Thus, we assume
that s; corresponds to the number of sites differing in = and y. Zhang et al.
estimate the branch length of ¢ with v; := s;/c+ 7. 1 is a small positive number
to avoid v; = 0. Further, let po(v;) the probability for a site to be the same in
x and y, and p;(v;) the probability for a site to change. Hence, the probability
for = evolving into y along i is given as p} = po(v;)¢% - p1(v;)®. As for short
branches, pg(v;) & 1, it follows that p} =~ p;(v;)®. For p; = p1(v;), w; is thus an
approximation of p}. Subsequently, Zhang et al. set p; = %(1 — e*%”i), which is
the corresponding value for p;(v;) under the Jukes-Cantor-Model[8]. Using this
approach, they obtain a larger base factor for longer branches. In return, the
parsimony score has a lower impact on the weights. Likelihood and parsimony
tend to be more apart when long branches are involved. With pSPRy, the au-
thors aim to counteract this effect.

Long-branch-attraction (LBA) is a phenomenon affecting parsimony. It de-
scribes the fact that tree topologies in which long branches are in the same sub-
tree, admit better scores [2]. Because of this bias, Hastings correction is required
for pSPR. To understand the corresponding ratio introduced by Zhang et al., we
consider configurations 6; and 6; 1, as illustrated in Figure f] We note that the
subtree B is the same in both situations. To propose 6;1 given 6;, r is selected
for regrafting with a probability of Q(6;11|6;) = wr /(3 jep/pw;)- For the re-
versed proposal, b is picked as a regrafting point. Q(6; | Oiy1) = ""b/(Zz‘eB/r w;)
is the probability for this to occur. The ratio of these two probabilities then
corresponds to the Hastings ratio introduced for pSPR by Zhang et al.:
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Fig. 3: Tree topologies after the pruning of A + a + g at 0; (6,41 resp.). Going
from 6; to 6,41, all branches in B except b are considered. Going the other way
around, all branches in B except r are potential regrafting points.
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The pSPR move also changes some branch lengths. This affects the branches
a, b and ¢ and their lengths are updated via a scaler mover algorithm [5]. Equiv-
alently to pSPR; and pSPRy, Zhang et al. define the moves pTBR; and pTBRo,
applying the described mechanisms for determining the two reconnection points.
Changes of branch lengths concern the branches a, ¢, and go.

For a pSPR move on a n-taxa tree, 2n parsimony scores must be calculated.
Applying pTBR, there are two reconnection points and all possible combinations
need to be taken into account. Therefore, the number of required parsimony
computations grows quadratically with the number of taxa. As this can make the
move computationally costly, Zhang et al. introduce an additional parameter J.
They only consider branches with a distance < ¢ to the bisection point as possible
reconnection points. Thus only 22(5+1) parsimony scores must be computed. In
their implementation, the authors set § = 5.

4 Experiments

Zhang et al. implemented the introduced move types in the framework MrBayes
[7] [12] available on[GitHub] For their experiments on empirical data, the authors
began working on 20 empirical datasets. At first, they made a reference run
with three heated chains and 20 Million generations. The purpose of this was to
ensure convergence and to produce reference results. For every dataset they ran
six independent chains. Then they determined the average standard deviation
of split frequencies (ASDSF) [I] for the resulting tree sets. In the following, they
only kept working on the six datasets for which this score was below 0.02.
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In the main experiment, no heated chains were used and the algorithm ran
for 10 Million generations only. Zhang et al. aimed to make the problem more
challenging to assess the performance of the different move types. They executed
the algorithm with three different setups, one for the extending move types and
one for each of the two parsimony-guided schemes. SPR and TBR were always
applied in a ratio of 2:1. For every setup, they ran 16 independent chains.

The authors provide a visualization of the tree spaces revealed for the six

datasets used in the main experiment (see Figure . Using multidimensional
scaling, the tree space computed for the respective dataset is projected into the
plane according to the trees SPR. distances. To compute these distances, the
authors made use of RSPR, an open-source tool developed for this purpose. It
implements a fixed-parameter algorithm admitting a runtime which grows expo-
nentially with the resulting distance but only linearly regarding the size of the
trees [13]. As considering the complete tree space was still too time consuming,
the analysis got restricted to a subset of 4000 trees (10%).
The visualizations show that the tree sets vary in their distribution. In some,
one or more islands can be observed, in others the data points are spread more
evenly across the tree space. Hence, the authors evaluated their implementation
on input data with different properties.

a) SQ10 (357 x 2925) b) DA10 (357 x 4493) c) LZ12 (425 x 2468)

Fig. 4: Each diagram corresponds to one dataset with the given abbreviation,
number of taxa and number of size. The cloud diagrams are produced by mul-
tidimensional scaling based on the SPR distances of 4000 sampled trees for the
respective dataset (adapted from [I4]).
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5 Results

In their first analysis, Zhang et al. considered how the likelihood of the sampled
tree evolves with the number of generations. The results for the dataset SQ10 are
depicted in Figure [5| For the parsimony-guided moves, the likelihoods increase
faster and reach better final results. Sometimes, stair-like structures occur in
the diagrams, indicating that the respective chain got stuck in a local maxi-
mum. However, this is less likely to happen if parsimony-guided moves are used.
Secondly, the authors focused on the ASDSF scores for the tree set in the current
generation compared to the reference results. Smaller values are reached for the
chains using parsimony-guided moves, hence This analysis reveals as well that
faster convergence occurs, when parsimony-guided moves are used. Further, the
Also in this analysis, faster convergence can be ob The outcome supports what
was also discovered in the analysis of the likelihoods: Using parsimony-guided
moves leads to faster convergence and moreover to results close to the reference
(ASDSF < 0.002). The results for the other five datasets differ slightly but the
major observations are the same.

a) SQ10(357x2925) Fig. 5: Variation of the likelihood of
7 the current sample with the number
of generations. The x-axis gives the
generations in a logarithmic scale,
and the y-axis indicates the log-
likelihood. Each line refers to an in-
= eSPR +eTBR dependent run. A different color is
. Eg'; ﬁ;:"‘;gﬁ; used for each setup (adapted from
: : [14]).
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Considering the results for the SQ-10 dataset, pSPRy and pTBRy seem to

work better than pSPR; and pTBR;. Taking the other datasets into account,
no clear difference between the two schemes of can be observed.
Additionally, Zhang et al. mention that mixing parsimony-guided and extending
proposals turned out to be helpful to improve convergence in certain datasets.
Overall, they read from their results that the links between parsimony and like-
lihood predominate the occurring mismatches which makes the approximation
of likelihood a with parsimony a powerful technique to improve convergence of
Bayesian phylogenetic methods.
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6 Discussion

Although the findings sound very promising, there are some points which can
be discussed. In their main experiments, Zhang et al. worked on six datasets
only. Further, these datasets admit a rather low variance regarding the number
of taxa (ranging from 357 to 935) and the number of sites (ranging from 1740
to 5681). Using more data here would make the results more convincing.

In their analysis, the authors focus solely on improvements concerning the num-
ber of generations, disregarding runtime. They state that the parsimony-guided
moves are not significantly slower than the extending ones, but do not provide
evidence supporting this claim.

The promising results are however a clear motivation to keep working on parsimony-
guided moves in order to improve convergence of Bayesian phylogenetic methods.
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