
ExaBayes User’s Manual

for support, please contact exabayes-at-googlegroups-dot-com

September 24, 2016

Contents
1 Quick Start 3

2 Scope of ExaBayes: What is it? What is it not? 3

3 Installation 4
3.1 Executing downloaded executables 5
3.2 Compiling ExaBayes from source 5
3.3 Installation of ExaBayes Into File Systems 7

4 Tutorial and Workflow 7
4.1 Basic Workflow . 8
4.2 Partitioned Alignment . 9

5 Command Line Options 11
5.1 Mandatory Arguments . 11
5.2 Optional Arguments . 13

6 Configuration File 14
6.1 Declaring and Linking Parameters 14
6.2 Declaring Priors for Parameters 16
6.3 Configuring the Run . 18
6.4 Configuring Proposals . 21

7 Pre-/post-processing utilities 23
7.1 parser . 24
7.2 postProcParam . 24
7.3 sdsf . 24
7.4 credibleSet . 25
7.5 extractBips . 25
7.6 consense . 25

8 ExaBayes on Clusters/Supercomputers 26
8.1 TL;DR summary . 26
8.2 Choosing the right kind of parallelism 27
8.3 Saving Memory . 29
8.4 Highly Partitioned Runs . 30
8.5 Note on Reproducibility . 30

9 File Format: Model/Partitioning file 31

1

10 Trading mixing efficiency versus runtime 32

11 Citation 33

12 References 34

2

1 Quick Start
Installation of ExaBayes requires basic proficiency with using a terminal (for
help, consider this tutorial).

For impatient users who want to give ExaBayes a quick try, we recom-
mend:

1. Download and unpack the software package. You find executables (se-
quential: yggdrasil, parallel: exabayes) in the ./bin folder. The -h
flag provides you with an overview of options. If you downloaded the
source code please follow the instructions in Sect. 3.2.

2. If you have convinced yourself, that the executables are in place, con-
sider running the examples in the ./examples directory (call the ./call.sh
or ./call-parallel.sh scripts there). If you want to run your own
dataset, convert your alignment file into phylip-format (e.g., using
seaview).

3. If you have prepared your dataset, run the sequential version of Ex-
aBayes, where alignmentFile.phy is the alignment file (use -m PROT
for protein data) and $RANDOM could be any random number seed.

$./bin/bin/yggdrasil -f alignmentFile.phy -m DNA -s $RANDOM

4. After some time, ExaBayes should finish or you may abort at any
time. You can now examine the two output files ExaBayes_topology*
and ExaBayes_parameters* using the post-processing tools consense,
postProcParam, credibleSet and extractBips (see Sect. 7). Call
the respective programs with -h for an overview of functions.

2 Scope of ExaBayes: What is it? What is it
not?

ExaBayes is a tool for Bayesian phylogenetic analyses. It implements a
Markov chain Monte Carlo sampling approach that allows to determine the
posterior probability of a tree (resp., topology) and various evolutionary
model parameters, for instance, branch lengths or substitution rates. Similar
approaches are implemented in BEAST [1] or MrBayes [5]. ExaBayes has
heavily drawn inspiration specifically from the latter one.

ExaBayes comes with the most commonly used evolutionary models, such
as the generalized time reversible model (GTR) of character substitution, the

3

https://help.ubuntu.com/community/UsingTheTerminal
http://beast.bio.ed.ac.uk
http://mrbayes.sourceforge.net/

discretized Γ model of among site rate heterogeneity and estimates trees with
unconstrained branch lengths. For clocked tree models or less parameter-rich
substitution models, we refer you to the established tools.

The distinguishing feature of ExaBayes is its capability to handle enor-
mous datasets efficiently. ExaBayes provides an implementation of data par-
allelism using the Message Passing Interface (MPI). This means, that if you
conduct your analysis on a computing cluster composed of several machines
(a.k.a. nodes), the memory needed to evaluate the likelihood of trees and
parameters given a large alignment can be spread out across multiple comput-
ing nodes. In conclusion, the size of the concatenated alignment ExaBayes
can handle is only limited by the combined main memory of your entire
computing cluster.

Aside from that ExaBayes also implements

• chain-level and run-level parallelism,

• techniques to trade runtime for reduced memory footprint,

• a subtree equality vector approach that reduces memory without loss
of runtime,

• a native AVX implementation for evaluating likelihood and parsimony
scores (i.e., ExaBayes makes full use of your cutting-edge CPU),

• techniques to efficiently handle an arbitrary number of partitions.

We use the highly efficient parsimony and likelihood implementation of
RAxML [7]. Many of the techniques described above are adapted from or
inspired by our experiences with large-scale maximum likelihood inferences
using RAxML-Light/ExaML [8, 6].

The ExaBayes package contains all tools necessary for post-processing
your sampled chains. For visualization of parameter distributions, we rec-
ommend Tracer and FigTree (for which ExaBayes parameter files are com-
patible).

3 Installation
For ExaBayes, we provide pre-compiled binaries that run on a wide range of
systems (limited to Linux and MacOS though, we will not be able to support
Windows in the foreseeable future). For optimal efficiency or if you want
to use the parallel version, it is highly recommendable to compile ExaBayes
from source. This should be straight-forward on a computer center, requires

4

http://tree.bio.ed.ac.uk/software/tracer/
http://tree.bio.ed.ac.uk/software/figtree/

a bit of work on a Linux system and unfortunately is not entirely trivial if
you have a MacOS system and no experience with the command line.

3.1 Executing downloaded executables

After you have downloaded the appropriate package, you find all executables
in the ./bin folder. Just execute these only using the -h flag and you will
be given a help page. If the executables produce error messages (indicating
that some library was not found), you either downloaded the wrong package
or you have to compile from source.

3.2 Compiling ExaBayes from source

Download and extract the source archive (sources are also included in all
binary distributions).

3.2.1 Prerequisites for Linux systems

ExaBayes requires a relatively recent c/c++ compiler that supports c++11
features. ExaBayes is confirmed to work with (only one required):

1. GCC, version 4.6 or greater

2. Clang, version 3.2 or greater

For running ExaBayes in parallel using more than one computing node,
you need a working MPI installation. If you want to make most of your local
multi-core machine (e.g., laptop), simply install OpenMPI or Mpich2. On
Debian/Ubuntu, this should be as simple as (choose one):

$ sudo apt-get install mpich2 libmpich2-dev
$ sudo apt-get install openmpi-bin libopenmpi-dev

For checking, if MPI already is installed on your machine, try to enter
mpirun or mpiexec in a terminal. If it is not installed, you will receive a
message "command not found".

3.2.2 Prerequisites for Mac OS X

For installation on an Apple system, you ideally should have set up an envi-
ronment that allows you to compile (MPI-)applications in the terminal.

First, you need to download and install Xcode (also available in the App-
Store) and MacPorts. You only need MacPorts, if you want to build the

5

https://developer.apple.com/technologies/tools/
http://www.macports.org/

parallel version. Open a terminal and use MacPorts to install an MPI im-
plementation (either openmpi or mpich2):

$ sudo port install openmpi-default
$ sudo port install mpich-default

After the installation, a message will suggest that you set the MPI in-
stallation as default. You now have MPI compiler wrappers available (mpicc-
mpich-mp, mpicxx-mpich-mp or mpicc-mpich-mp, mpicxx-mpich-mp or mpicc,
mpicxx).

For installing MPI, also consider HomeBrew which is an alternative to
MacPorts that does not require sudo.

3.2.3 Configuring and Compiling

ExaBayes uses the typical autotools setup. Typically, the MPI environment
(if available) or best vectorization scheme (SSE or AVX) is determined au-
tomatically. The basic command for building exabayes (with MPI support)
is

./configure --enable-mpi && make

Consider the following options:

• important: use the –bindir option with the absolute path to a directory
in conjunction with "make install" to dump all executables into a folder
/full/path/to/this/dir/bin

./configure --bindir=/full/path/to/this/dir && make install

• omit "–enable-mpi" to only build the multi-threaded version (e.g., if
you have no MPI support available)

• for the build on Mac systems, itmay be necessary to add CXXFLAGS="-
stdlib=libc++" at the configure step:

./configure CXXFLAGS="-stdlib=libc++" && make

• use the ./configure environment variables (see ./configure –help) to
specify non-default compilers, for instance

./configure --enable-mpi CC=clang-3.3 CXX=clang++-3.3 MPICXX=mpicxx.openmpi

6

http://brew.sh/

will configure exabayes to be build with clang-3.3 and OpenMPI, although
default compilers of your system are – for instance – gcc and MPICH.

Once everything has compiled, check, if all binaries are there as expected:

$ ls bin
consense credibleSet exabayes extractBips parser postProcParam sdsf yggdrasil

Please notice:

1. Compilation takes a while: if you have multiple cores available, then
use "make -j x", where x is the number of cores you want to use for
compilation.

2. If for some reason you want to re-compile the code, do not forget to
run "make clean" first.

3. If you compile on a cluster where your login-node has an AVX-capable
CPU, then you will get an AVX-optimized exabayes. If you now try
to execute this version of exabayes on a non-AVX capable CPU, the
program mostly will just crash with the message "Illegal instruction.".
In these cases, compile exabayes on one of the nodes you intend to
execute ExaBayes later or use the configure flags "–disable-avx", etc.

3.3 Installation of ExaBayes Into File Systems

So far we have compiled the executables. The build system offers the ca-
pability to install compiled binaries and documentation into defined places
(e.g., ~/usr, /usr/local, /opt).

In order to achieve this, you need to specify an absolute path as "–prefix"
and invoke "make –install" after the successful build:

$./configure --prefix=/home/user/usr && make && make --install

4 Tutorial and Workflow
This is a basic tutorial for how to conduct Bayesian tree inference with
ExaBayes (specifically useful, if you do not have much experience with Bayesian
tree inference).

Assume you want to analyze an alignment file that contains several par-
titions. Create a folder and copy aln.phy and aln.part from the folder
examples/dna-partitioned into that folder. Copy ./examples/configFile-all-options.nex
as well and rename it to config.nex. We will assume that all executables
are in this working folder (otherwise, modify the path to the executable ac-
cordingly).

7

4.1 Basic Workflow

Let’s at first simply run a single chain for some time:

$./yggdrasil -f aln.phy -m DNA -n myRun -s $RANDOM

ExaBayes will print output that is separated into various sections:

1. after the header, you find a section (divided by ’=’) that re-iterates the
alignment (number of unique patterns and type of partitions).

2. In the next section, ExaBayes lists the parameters to be integrated. For
instance, the tree topology is considered a parameter. It also displays
the (default) prior for parameters and initial values.

3. The 3rd section contains the proposals that are instantiated for inte-
grating over the aforementioned parameters.

During the MCMC simulation, ExaBayes prints the log-likelihoods (lnl) of
the (sole) chain. You’ll find that after some time the lnl will reach a plateau.
Stop the run after something like 50,000 generations (using Control-c).

Now examine the output files created by ExaBayes (we neglect the binary
alignment file and the checkpoint files):

• ExaBayes_info.myRun
Contains the same information also printed to the screen.

• ExaBayes_topologies.myRun.0
Contains all sampled topologies in nexus format.

• ExaBayes_parameters.myRun.0
Contains values sampled for all non-topological, non-branch length val-
ues.

• ExaBayes_diagnostics.myRun
Contains chain diagnostics (e.g., acceptance ratios for all proposals or
topological convergence in form of asdsf).

Now use the post-processing tools to examine the result. First, we create
a consensus tree:

$./consense -f ExaBayes_topologies.myRun.0 -n myCons

Now, open a tree viewer of your choice (e.g., FigTree, Archaeopteryx or
Dendroscope) and have a look at the consensus tree. If you ran just 50,000
generations, you will probably find the confidence in most branches is pretty
low.

Let’s inspect the 50% credible set of trees:

8

$./credibleSet -f ExaBayes_topologies.myRun.0 -n cred

The output file ExaBayes_credibleSet.tmp contains all sampled trees
ordered by the frequency of their occurrence. You probably will find that no
tree occurred more than once.

Finally, let’s check, how well the parameters are sampled:

$./postProcParam -f ExaBayes_parameters.myRun.0 -n params

Alternatively, you could also open the parameter file with Tracer and
visualize the distributions. If you do not have Tracer installed, have a look
at ExaBayes_parameterStatistics.params (spreadsheet tools like Excel
are helpful). You’ll find summary statistics for each parameter. Specifically,
check out the effective sampling size (ESS) value for each parameter. Since
samples in a chain are correlated, they are less informative, than if you had
drawn the values independently from the original distribution. The ESS of
samples indicates the number of samples your samples corresponds to, if they
were drawn independently.

You will find that most ESS values are in the range between 30 and 80.
This is not bad for the low number of generations, but to assure that each
parameter has been sampled adequately, values should be > 100 or even
better > 200. High ESS values indicate that your chain has explored this
parameter sufficiently.

4.2 Partitioned Alignment

Now remove the files from the initial run (otherwise ExaBayes will complain).
We will now conduct a proper analysis using several chains on a partitioned
alignment.

You have to modify config.nex (remove the square brackets to uncom-
ment). Uncomment numGens and set it to 100000 (or 1e5). Uncomment
numRuns and set it to 4. This means that ExaBayes will conduct 4 indepen-
dent analysis (starting in 4 different random trees). If all runs yield the same
split frequencies (i.e., the same confidence in a split), we can be relatively
sure that we have sampled the topology parameter sufficiently (while it is
still possible that simply all 4 chains got stuck in the same local optimum).

Check out the partitions file (aln.part): it contains 4 partitions. By
default, ExaBayes assumes that partitions have distinct branch lengths. Let’s
link all partitions into a single branch length parameter. To do so, add
"brlens = (0-3)" in the params section.

Use this command line to start the analysis:

$./yggdrasil -f aln.phy -q aln.part -n myRun -s $RANDOM -c config.nex

9

By default, ExaBayes will compute the average standard deviation of split
frequencies (asdsf) every 5,000 generations and stops the analysis once it the
asdsf is better than 5% (and once we have at least 100,000 generations for
each chain).

The analysis may take a while. If you have a cluster (with for instance
16 cores) at your disposal, consider running the parallel version:

$ mpirun -np 16 ./exabayes -f aln.phy -q aln.part -n myRun -s $RANDOM -c config.nex -R 4

With -R 4, ExaBayes runs all 4 chains in parallel. In an additional sec-
tion, ExaBayes will inform you which chains and how many unique site pat-
terns are assigned to each process.

You will notice after 100,000 generations, that the 4 chains converge
rather slowly. Thus, enable Metropolis-Coupling to speed up the conver-
gence. Set numCoupledChains to 2 and (for purely computational reasons in
this example), reduce the numRuns to 2. Also, set parsimonyStart to true,
such that your chains start from a parsimony tree instead of a random tree.
Using parsimony trees as initial topologies saves you some time, however the-
oretically it also increases the probability that all your independent chains
become stuck in the same local optimum and you obtain incorrect estimates
for posterior probabilities.

If you have many cores, to run the two independent runs as well as the
coupled chains in parallel:

$ mpirun -np 16 ./exabayes -f aln.phy -q aln.part -n myRun -s $RANDOM -c config.nex -R 2 -C 2

After ≈ 150,000 generations, the ASDSF should have fallen below 5%,
which is acceptable. A look at the consensus tree reveals that this dataset
in fact contains several low confidence branches. While in the first run the
reason for low confidence branches was due to the low number of generations,
we can be more certain now that that low confidence branches are a result
of the phylogenetic signal in the alignment. Since you ran 2 independent
analyses, you obtain 2 sets of output files (parameter and topologies). You
can feed both files into the consensus tree (for both files the initial 25% of
samples will be discarded).

$./consense -f ExaBayes_topologies.myRun.* -n myCons

Analyze both parameter files using

$./postProcParam -f ExaBayes_parameters.myRun.* -n params

10

Since we carried out two partitioned analyses, we have a larger number
of parameters (where e.g., r{2}(C<->T) is the substitution probability of C
to T in the third partition). We find that nearly all parameters have an
ESS > 100. The final column now contains the potential scale reduction
factor (PSRF). It indicates, whether within-chain variance (of a parameter)
is similar to between-chain variance. For this convergence statistic, values
should be close to 1, but lower than 1.2 or 1.1 (probably the case after 150,000
generations).

So far, we have neglected the branch length parameter. You may already
have noticed, that the consensus tree has been annotated with branch lengths.
To extract ESS and PSRF values for each branch length, run:

$./extractBips -f ExaBayes_topologies.myRun.* -n bls

Thus, you obtain the following files:

• ExaBayes_bipartitions.tmp
contains an identifier for each branch/split (that is explicitly printed)

• ExaBayes_fileNames.tmp
lists the file names used as input (and assigned an id to them)

• ExaBayes_bipartitionBranchLengths.tmp
contains all raw branch lengths sampled and lists split id and file ids

• ExaBayes_bipartitionStatistics.tmp
contains statistics for each branch (specifically the ESS and PSRF)

Notice that for low confidence branches you are likely to encounter poor
ESS/PSRF values. This means that you substantially have to increase the
number of generations in order to obtain accurate estimates of branch lengths
distributions.

5 Command Line Options
Command line options specify, how ExaBayes will carry out the analyses.
In contrast, the a config file specifies which kind of analyses will be executed.

5.1 Mandatory Arguments

• -f alignmentFile

11

provides an alignment file. If this file is the binary output produced
by parser (see Section 7.1), then no further arguments are required.
If you provide a plain (un-processed) Phylip file, then either -m (single
partition model) or -q (model file) are mandatory.

• -m DNA | PROT

specifies the data type used, when a Phylip-formatted alignment has
been passed via -f. This way, the alignment is parsed as a single
partition with either DNA or amino acid (PROT) data.

• -q modelFile

specifies a raxml-style partitioning/model scheme for the alignment.
For this option, a Phylip-formatted alignment must be passed via -f.
See Section 9 for a description of the file format.

• -s seed

provides a random seed. This number makes the run reproducible.
The same seed, data set configuration file will result in the exact same
result (apart from limitations given in Section 8.5). If you restart from
a checkpoint file, this option will be ignored.

• -n id

provides a run id used for naming output files

• -r runid

restarts your run from a previous run id. If your previous ExaBayes-
run did not finish (because of a manual abort or walltime restrictions),
this option can be used for continuing the run. It is essential, that
you pass the same configuration and alignment file. Some adaptions
to the configuration file are possible (e.g., larger number of generations
to be run, lower topological convergence threshold). Furthermore, all
files that carry the previous runid in their name must be located in the
current folder.
Example:

$ mpirun -np 8 ./exabayes -s $RANDOM -n myId -c myConfig -f myBinaryAlnFile.bin
$ [runnig....] -> aborted!
$ mpirun -np 2 ./exabayes -r myId -n myIdContinued -c myConfig -f myBinaryAlnFile.bin -S

12

http://evolution.genetics.washington.edu/phylip/doc/sequence.html

5.2 Optional Arguments

• -d

carries out a dry-run. Only checks your config and alignment file and
does not compute anything. Very recommendable, before submitting a
large run to a cluster.

• -T n

Executes Yggdrasil with n threads. We recommend to use the multi-
threaded version of yggdrasil only on systems, where no MPI installa-
tion is available.

• -c configFile

passes a configuration file that specifies how the MCMC will be carried
out (see ./examples/configFile-all-options.nex and Section 6 for details)

• -w workDir

specifies a location for output files

• -R num

(exabayes-only) specifies the number of runs (i.e., independent chains)
to be executed in parallel. Large runs should be carried out as separate
runs, see Section 8 for further details.

• -C num

(exabayes-only) specifies the number of chains (i.e., coupled chains
per independent run) to be executed in parallel. Employing this option
may be less efficient in terms of runtime and memory than data-level
parallelism, see Section 8 for further details.

• -S

try to save memory using the SEV-technique for gap columns on large
gappy alignments Please refer to this paper. On very gappy alignments
this option yields considerable runtime improvements.

• -M mode

specifies the memory versus runtime trade-off. <mode> is a value
between 0 (fastest, highest memory consumption) and 3 (slowest, least
memory consumption). See Section 8.3 for details.

13

http://www.biomedcentral.com/1471-2105/12/470

6 Configuration File
In this Section, we describe all available options of the configuration file in
detail. The configuration file is a file in nexus-format that is divided into
sections. See examples/all-options-documented.nex for a complete version
(and maybe copy and customize this file). None of the following blocks in
mandatory. The parameter file itself is not mandatory and the default values
mentioned below are used instead. The nexus-syntax for declaring a block is
(here declaring a run block).

begin run;
option value

end;

6.1 Declaring and Linking Parameters

keyword: params
This section allows to declare and link parameters (e.g., branch lengths)

across partitions. You should have declared partitions in the partition file
(passed via -q). If you provided a partition file to the parser tool, then the
binary output file already contains information about partitions. Partition
ids start with 0 and refer to the order provided in the partition file.

Currently the following keywords can be used to specify a parameter
linking scheme (keywords are case-insensitive):

param explanation
stateFreq link the equilibrium state frequencies (4 for DNA, 20 for AA) for partitions
rateHet link the alpha parameter of the Γ distribution of rate heterogeneity among sites
revMat link the substitution rates in the GTR matrix (DNA:6, AA:190) across partitions
brlens link branch lengths across partitions
aaModel link the fixed rate substitution matrix across partitions (if applicable)

Note that, by default all parameters are unlinked for all partitions. Specif-
ically regarding branch lengths, most people only want one global branch
length parameter. If a partition id is omitted from the scheme, the default
behaviour of ExaBayes is to instantiate a new parameter for this partition
(i.e., it is unlinked).

You have the following options for specifying linkage (here demonstrated
for the branch length parameter):

14

• use comma to declare partitions as separate parameters
example: brlens = (0,1,2,3)
result: v{0}, v{1}, v{2}, v{3}

• use plus to link two partitions into one parameter
example: brlens = (0 + 1 , 2 , 3)
result: v{0,1}, v{2}, v{3}

• use colon to declare a range of unlinked partitions (each one parameter)
example: brlens = (0:3)
result: v{0}, v{1}, v{2}, v{3}

• use dash to declare a range partitions linked into one parameter
example: brlens = (0-3)
result: v{0,1,2,3}

For most use cases, you probably will only want to link all branch lengths.
However, in case you work with protein partitions, please consider:

• By default ExaBayes creates one aaModel parameter for each of your
amino acid partitions. As state frequencies, ExaBayes uses the em-
pirical frequencies provided by the respective amino acid substitution
matrix.

• Instead of using the empirical frequencies, you may want to let Ex-
aBayes integrate over these state frequencies. For doing so, you simply
have to declare one of the respective partitions when specifying the
stateFreq parameter scheme. If you have two AA partitions, then
stateFreq = (0) instructs ExaBayes to integrate over the state fre-
quencies of the first amino acid model parameter.

• As an alternative to proposing fixed-rate AA substitution matrices for
AA partitions, you can use ExaBayes to integrate over amino acid GTR
matrices (189 free parameters). For doing so, declare (and link) the
respective AA partitions in the revMat linking scheme (e.g., revMat =
(0+1) for 1 shared GTR matrix across 2 AA partitions).

15

6.2 Declaring Priors for Parameters

keyword: priors
The prior block let’s you declare your prior belief regarding the values

of parameters ExaBayes integrates over. This affects parameters implicitly
instantiated by ExaBayes or explicitly defined in a params block (see Section
6.1).

By default priors specifications are applied to all matching parameters.
You can overwrite these general priors by specifying parameter-specific pri-
ors. For doing so, list all at least one partition that is assigned to your target
parameter in curly brackets after the prior keyword. For instance:

brlenPr exponential(10)
brlenPr{0,2,10} uniform(1e-6,10)

applies a uniform prior with [1e− 6, 10] to all branch length parameters that
contain the partitions 0,2 or 10 and applies an exponential prior with λ = 10
to all remaining branch length parameters.

6.2.1 Topology Prior

keyword: topoPr,
default: topoPr uniform()
valid values:

• fixed()
topology is kept fixed

• uniform()
all topologies have the same prior probability

6.2.2 Branch Lengths Prior

keyword: brlenPr ,
default: brlenpr exponential(10)
valid values:

• exponential(λ)
exponential prior with parameter λ,

• uniform(start,end)
uniform probability in the range [start, end]

16

• fixed(val)
all branch lengths will be assigned the value val that is kept fixed during
the analysis

• fixed()
all branch lengths keep original branch length provided via a starting
tree. If no starting tree is available, a default value (currently 0.1) is
assigned and kept fix during MCMC sampling.

6.2.3 Reversible Matrix Prior

keyword: revMatPr
default: revMatPr dirichlet(1,...,1)
valid values:

• dirichlet(x1, x2, . . . , xn)
where for a dirichlet prior xi are the substitution rates in a GTR matrix
and thus n = 6 for DNA GTR matrices and n = 190 (use with care)
for AA GTR matrices.

• fixed(x1, x2, . . . , xn)
fixed rates are assigned to the matrix and kept fix during MCMC sam-
pling. The values xi may be expressed as relative rates (i.e, ExaBayes
will normalize the rates, s.t. they sum up to 1.0)

6.2.4 Rate Heterogeneity Prior

keyword: shapePr,
default: shapePr uniform(0,200)
valid values:

• exponential(λ)
prior probability of α values have an exponential distribution with pa-
rameter λ

• uniform(start, end)
α values have uniform prior probability in the range [start, end]

6.2.5 State Frequencies Prior

keyword: stateFreqPr ,
default: dirichlet(1,1,. . .,1)

17

valid values:

• dirichlet(x1, x2, . . . , xn)
where for a dirichlet prior xi are the state frequencies in a GTR matrix
and thus n = 4 for DNA and n = 20 in a protein GTR matrix.

• fixed(x1, x2, . . . , xn)
fixed values are assigned to the state frequencies and not changed dur-
ing MCMC sampling. xi can be expressed as relative rates (i.e., if the
sum is ≥ 1, ExaBayes does the normalizing for you)

6.2.6 Amino Acid Model Prior

keyword: aaPr,
default: aaPr disc(remainder=1.0)
valid values:

• disc(m1 = w1, m2 = w2, . . ., mn = wn)
a discrete probability distribution assigning weights wi to protein sub-
stitution matrices mi. If only one model is specified, this is equivalent
to a fixed prior.

m may be one of the following models: DAYHOFF, DCMUT, JTT,
MTREV, WAG, RTREV, CPREV, VT, BLOSUM62, MTMAM, LG,
MTART, MTZOA, PMB, HIVB, HIVW, JTTDCMUT, FLU.

By default, if a model is not mentioned in the list, then its prior prob-
ability is 0 and thus is not considered during MCMC sampling.

Additionally, you can include remainder value (i.e., remainder= wi).
This means that all matrices not mentioned have a prior probability of
wi.

• fixed(m)
fix the value of the parameter to one of the models listed above

6.3 Configuring the Run

All of the following options need to be enclosed within a block featuring the
keyword run.

18

6.3.1 General Options

The following options allow you to exactly configure what kind of Bayesian
sampling is performed. Keywords and default values are mentioned along
the description of the options.

The most important settings are, how many independent runs (numRuns,
default: 1) you want to run for how many generations (numGen, default:
1,000,000). If you execute exactly 1 run, then ExaBayes will terminate after
numGen generations. For more than 1 run, ExaBayes will terminate once
numGen generations have passed and one of the following topological conver-
gence diagnostics are below a specified threshold.

By default, ExaBayes draws a sample from every cold chain (i.e., for each
independent run) every 500 generations (can be changed via samplingFreq).
To change the print frequency (informing you about the likelihood state of
each chain), modify printFreq.

ExaBayes updates a checkpoint file at regular intervals (1,000 generations
by default), the respective variable for changing the frequency is check-
PointInterval.

By default, ExaBayes starts from a random-order addition parsimony
tree. If you want to start from a purely random topology, set parsimonyS-
tart to false.

Some proposals (e.g., the branch length multiplier) can be tuned for
achieving good acceptance ratios. ExaBayes tunes proposal parameters, once
a proposal has been drawn 100 times (use tuneFreq to change this, set it to
0 to disable tuning).

If you are running a dataset in parallel that comprises many partitions,
it is advisable to group the proposals per partition into proposal sets (i.e.,
set proposalSets to true, this is the default). If proposal sets are enabled
and you have for instance multiple substitution matrix parameters, then Ex-
aBayes will propose new substitution parameters for each substitution matrix
parameter one after another (instead of only drawing one of the parameters
at random).

6.3.2 Options regarding convergence

ExaBayes implements the same diagnostics for topological convergence as
MrBayes and BEAST. These are either the maximum or the average devi-
ation of split (i.e., bipartition) frequencies (MSDSF/ASDSF). By default,
ExaBayes employs the ASDSF. You can change to MSDSF by setting con-
vergenceCriterion to max. For disabling the convergence detection, set it
to none.

19

The convergence threshold for either of these statistics can be specified via
sdsfConvergence (default: 0.05, i.e., the respective statistic must be≤ 5%).
Usually, splits that exhibit a low posterior probability are excluded from this
statistic, since it is hard to determine their probability accurately. You can
specify the exclusion threshold for the ASDSF/MSDSF via sdsfIgnoreFreq
(default: 0.1, i.e., splits that do not occur in at least 10% of the trees of a
run are ignored).

Also relevant for the convergence statistic is how many samples are dis-
carded by ExaBayes as burn-in. By default, the initial 25% of all sampled
trees are discarded (change this via burninProportion). If you want to use
an absolute burn-in, specify burninGen (e.g., "burninGen 1e4") instead.
In this case, all trees sampled prior to generation 10,000 are discarded.

ExaBayes checks for topological convergence once every run has proceeded
by 5, 000 generations (set the diagFreq variable to change this value).

6.3.3 MC3 options

If you sample a rough likelihood landscape, you may want to employ Metropolis-
coupled MCMC (MC3, turned off by default). In very brief terms, this means
that a number of heated chains are coupled to the cold chain (from which
samples are drawn). All coupled chains attempt to swap their states at reg-
ular intervals. Thus, the cold chain can be enabled to reach regions of the
parameter space (potentially separated by values with low posterior proba-
bility) that are otherwise very unlikely to be sampled.

The total number of coupled chains can be specified via numCoupled-
Chains. This number includes the cold chain, so if you want to add three
heated chains, "numCoupledChains 4" is the correct statement.

The chains are heated incrementally, so the more chains you added, the
hotter the hottest chain will get. The heat β for the i-th heated chain
(where i = 0 for the cold chain) is defined as

β =
1

1 + i · δ
. (1)

When deciding upon acceptance of a new state, the likelihood and prior
ratio are exponentiated with β (thus increasing the acceptance probability
for heated chains). By default, the heat constant δ is set to 0.1. The value
changed by setting the variable heatFactor.

The expected number of swap attempts between chains per generation
(i.e., after each chain has proceeded this many generations) can be specified
via numSwapPerGen (default: 1). This is a very important variable that

20

affects both the performance of the MC3 mechanism as well as the your
parallel runtime performance (if applicable).

The reason for this is, that an increase of number of coupled chains will
not directly translate into more efficient sampling. If the number of swap
attempts is kept constant, then it becomes increasingly unlikely that any
change is propagated to the cold chain as you increase the number of heated
chains. On the other side, if you run coupled chains in parallel (-R argument),
then more swapping attempts will lead to increased waiting times. This is,
because processes computing the chain will have to wait for processes that
compute the likelihood of the other chain involved in a swap attempt.

If you want heated chains to start from the same topology as the cold
chain, set heatedChainsUseSame to true.

6.4 Configuring Proposals

ExaBayes allows you to configure proposals that are used to move your chains
through the parameter space. For each proposal, a relative weight governs,
how often a specific proposal is drawn. You can customize your proposal
mixture by modifying these weights. A proposal provides values for a single
parameter only, so a change of the relative weight affects all related proposals.
Specifically the topological proposals are described in detail in [4].

Using proposal sets does not change how often a proposal is drawn relative
to runtime (so no modifications are necessary).

21

keyword full name affected parameters default weight
nodeSlider node slider branch lengths 0
treeLengthMult tree length multiplier branch lengths 1
branchMulti multiplier on branch lengths branch lengths 7
eTBR extending tree bisection and

reconnection (eTBR)
topology 0

eSPR extending subtree pruning
and regrafting (eSPR)

topology 6

parsimonySPR parsimony-biased subtree
pruning and regrafting

topology 6

stNNI stochastic nearest neighbor
interchange

topology 6

likeSPR a posterior-guided SPR topology 2
rateHetMulti multiplier on α rate heterogeneity 1
revMatSlider sliding window rev. matrix (DNA,AA) 1
revMatDirichlet dirichlet proposal rev. matrix (DNA,AA) 1
RevmatRateDirich partial dirichlet proposal rev. matrix (AA) 1
frequencySlider sliding window state frequencies 0.5
frequencyDirichlet dirichlet proposal state frequencies 0.5
aaModelJump fixed AA matrix amino acid model 1
blDistGamma Newton-Raphson-based

branch length proposal
employing a Gamma
distribution

branch lengths 7

blDistWeibull Newton-Raphson-based
branch length proposal
employing a Weibull distri-
bution (not recommended)

branch lengths 0

Moreover, the behaviour of the topological proposals can be customized.
The eSPR prunes a subtree, follows down a random path (starting with
the original pruning position) and chooses the current branch as re-grafting
position with a certain stopping probability (keyword: eSprStopProb). In
case of the eTBR, the tree is bisected at a branch and the bisected branch
traverses the tree on both ends as described for the eSPR (keyword for the
stopping probability is eTbrStopProb).

The parsimony-biased SPR (parsSPR) move prunes a subtree and pro-
poses a regraft position proportionally to the parsimony score of the resulting
tree. The parsSPR evaluates the parsimony score for regrafting positions that
are no more than n steps (keyword: parsSPRRadius) apart (i.e., it considers
branches within a specified radius for re-insertion). Computing the parsi-

22

mony score is extremely fast and parallelized in ExaBayes. If you are dealing
with large trees, consider increasing the radius. It may not increase mix-
ing, but definitely will reduce the burn-in time and the increase in runtime
should not be problematic. The default value depends on the logarithm of
the number of taxa (a reasonable assumption, if we do not expect comb-like
trees).

Similar to MrBayes, parsimony scores are heated (i.e., exponentiated)
using the value of parsimonyWarp. If this value is decreased, the probability
that trees with low parsimony score are proposed will get higher.

The posterior-guided SPR move is particularly expensive, since after
pruning, it evaluates all reattachment locations in a radius (specified by
likeSprMaxRadius) and uses a score based on the posterior to propose a
SPR move. How heavily ExaBayes relies on this score can be quantified with
likeSprWrap (e.g., choose a likeSprWrap = 0.1 or 0.01 to give topological
changes that decrease the posterior by -10 resp. -100 log-units a reasonable
chance of being proposed).

moveOptMode allows you to enhance topological proposals by simultane-
ously proposing branch lengths along with topology (turned off by default).
Value 1 means that one branch that is remapped by any NNI/SPR will be
proposed. For moveOptMode = 2, all branches that are traversed by a mov-
ing subtree will be proposed. For moveOptMode = 3, we additionally propose
two branches adjacent and for moveOptMode = 4, adjacent subtrees (e.g.,
also the root branch of the moving subtree) will be proposed. By default,
the NR-based Gamma distribution proposal is used, if useMultiplier is true,
then a multiplier is used instead (not recommended).

keyword default value
eSprStopProb 0.5
eTbrStopProb 0.5
parsimonyWarp 0.10
parsSprRadius b2 · log(n)c
useMultilier false
moveOptMode 0
likeSprMaxRadius dlog2(n)e
likeSprWrap 1.0

7 Pre-/post-processing utilities
For all utilities, please use the -h option, the documentation is mostly suffi-
cient to execute the programs. In this section, we provide additional hints
and caveats about employment of these tools.

23

7.1 parser

This utility parses an phylip-formatted alignment and creates a binary rep-
resentation of this alignment. You either have to indicate the data type of a
single partition alignment (via -m) or provide a model file via -q (see Section
9).

Parsing large alignment can take a considerable amount of time that is
lost manifold when ExaBayes is executed in parallel.

7.2 postProcParam

This utility can be used to summarize (similar to sump in MrBayes or the
summary statistics in Tracer) all sampled parameters.

This is straight-forward for continuous parameters (such as substitu-
tion rates). If you integrate over fixed protein model matrices (e.g, WAG,
LG,. . .), you are integrating over a discrete parameter. The output in the
ExaBayes_parameters* will list the respective matrices. In this case, post-
ProcParam will create an extra column that contains the discrete distribu-
tion.

You should check, if all ESS values are greater than 100 and (if available)
PSRF values are close to 1 (< 1.1 is considered good convergence).

7.3 sdsf

This utility computes deviations of split frequencies (either maximum or
average, abbrev. as ASDSF/MSDSF). If you are integrating over topologies
(you usually are), ASDSF/MSDSF are an essential convergence criterion.
Usually an ASDSF of 0.5 − 1% is considered "excellent convergence" and
values between 1− 5% are considered to be acceptable.

You will encounter strongest deviations for branches with low posterior
probability.

The stand-alone sdsf computes the same result that is also calculated, if
you run multiple independent analysis with convergence criterion. If you run
an exceptionally large analysis with multiple independent runs and plan on
sampling a very large number of trees, it is recommendable to launch each
independent run as a distinct ExaBayes session. You could have a master-
script that launches the independent runs (to be run for e.g., 2 h), then
checks for convergence and restarts the runs from the respective checkpoints,
if not converged yet. If an immense number of processes is involved and your
cpu-h budget is tight, this saves you sequential overhead.

24

7.4 credibleSet

This utility computes the credible set of topologies (up to a specified per-
centile) in one or many tree sets. Use it for post-analyses of your tree samples.

7.5 extractBips

This utility extracts bipartitions (AKA splits or edges) from tree sets and
the branch lengths associated with these bipartitions. Note that, this utility
also examines trivial bipartitions (these correspond to outer branches in a
tree).

extractBips produces the following files:

• ExaBayes_bipartitions.* lists the smaller partition of a bipartition
(i.e., all taxa omitted are in the complementary partition) and assigns
a unique identifier to the bipartition.

• ExaBayes_fileNames.* lists the file names of the input topology
files and assigns a for reference in the remaining two files.

• ExaBayes_bipartitionBranchLengths.* contains all unique branch
lengths samples associated with a specific bipartition in a specific file.
The file id and bipartition id from the previous two files are used for
that.

• ExaBayes_bipartitionStatistics.* contains summary statistics for
the branch lengths associated with bipartitions (similar to the output
of postProcParam). The ESS value indicates, whether you have suf-
ficiently sampled the branch length associated with a branch and the
PSRF value can be used to judge, if the samples from different chains
converged against the same distribution. You have sufficiently sampled
a parameter, if the ESS is > 100 and a PRSF < 1.1 is an indicator of
good convergence.

If a bipartition occurs only in one chain, extractBips will produce -nan-
values.

7.6 consense

This utility allows to build consensus trees from one or more tree sets. If
computing the consensus tree (specifically the extended MR consensus) be-
comes computationally challenging, you may want to give the parallelized
consensus tree algorithm in RAxML a try (use -J MRE).

25

https://github.com/stamatak/standard-RAxML

consense will produces two output files (one in Newick format, one in
Nexus format). Nodes are annotated with marginal probability (i.e., confi-
dence), median, mean and 5%/95% quantile values.

If you ran analyses with unlinked branch lengths (i.e., you had multiple
partitions with a branch length parameter each), then you should create
one consensus tree for each branch length parameter. ExaBayes writes one
topology file per parameter and per analysis. So you can consense all files
that have a "tree-x" (where x is the id of the parameter) in their name.

8 ExaBayes on Clusters/Supercomputers
The striking feature of ExaBayes is its capability to execute standard analyses
on clusters and super-computers efficiently. This section goes through various
aspects worth considering.

On clusters you often have to load a MPI module first. If you downloaded
binaries, try to execute ExaBayes using n processes and using either mpirun
or mpiexec as follows:

$ mpirun -np n ./exabayes <further args>

The exact invocation may vary depending on the MPI installation. If this
does not work, make sure you downloaded the corrected package or consider
compiling ExaBayes from source. On clusters, you usually have to provide a
batch script that is committed to the scheduler.

In ExaBayes, you may have several computing nodes working on a chain
in parallel. We refer to the entirety of nodes computing a chain as parallel
unit.

8.1 TL;DR summary

In most cases, if you have x processes available (e.g., 4 machines with each
12 cores ⇒ 48 processes):

• if you run n independent analyses, use -R n.

• if you want to runm coupled chains, check, if ExaBayes becomes faster,
if you increase from -C 1 (default) over -C 2 to -C 4 up to -C m (often
the optimum is 2 or 4). For each increment (default: 500 generations),
ExaBayes prints the time required for the last increment (use this for
benchmarking).

26

• check the load balance output. For good parallel efficiency, each process
should at least have ≈ 100 patterns. Otherwise, less processes may
be sufficient, but more do not hurt, if you are not under a budget
constraint.

8.2 Choosing the right kind of parallelism

ExaBayes implements three levels of parallelism (in descending order of gran-
ularity):

• runs-level parallelism,

• chain-level parallelism,

• data parallelism.

For optimal performance, please consider the following example. Assume,
you run m coupled chains and n independent runs, while you specify that
mp coupled chains and np independent runs are run in parallel (via -R and
-C). For reasons of load balance, m should be a multiple of mp (analog for
n). Assume each of your computing nodes has k cores and you want to use
l computing nodes for each parallel working unit (working on one coupled
chain in an independent run that is executed in parallel). Thus, you will
obtain optimal performance, if you execute ExeBayes with a total number of
processes of

processes = mp · np · l · k. (2)

If the number of cores k is divisible by 2, l = 2i (where i < 0) works as
well. This way several parallel working units fit on a node.

8.2.1 On Run-level Parallelism

Obviously, run-level parallelism is the most efficient kind of parallelism. Pro-
cesses working on different runs rarely have to communicate with each other
(except for writing a checkpoint, so make sure your checkpointing frequency
is not too low). If you instruct ExaBayes to execute 2 runs parallel, then
using twice as many processes should result in an optimal speedup of two.

Alternatively, you can commit each independent run separately to the
cluster and naturally get the same parallel speedup this way. You will save
computational time, if you regularly check for topological convergence (using
the sdsf tool). So one possibility is to commit several runs for which you
specify a large number of generations in the config file and a relatively short

27

walltime (maybe 2h). After the scripts have finished, another script checks
the ASDSF and recommits the runs (using the checkpointing functionality
-r). Or you could commit several jobs for each of your run and each job
has to wait for the previous job to finish (e.g., using -hold_jid with Grid
Engine).

The optimal strategy depends on the configuration of your cluster/supercomputer.
In some instances a single large run parallelized via -R allows your job a
higher priority in the queue, in other instances smaller jobs that run for a
short period will allow you to get the results as quickly as possible.

If you sample an immense number of trees using an immense number
of processes, we recommend to choose a non-monolithic (e.g., the second)
strategy. The sdsf requires a bit of runtime on its own that increases with
the number of trees and that is lost manifold, if many processes have to wait
before they continue.

8.2.2 On Chain-level Parallelism

Employing chain-level parallelism in Bayesian analyses comes with some
caveats. The speedup you can achieve with coupled chains strongly depends
on how often an individual coupled chain is involved in a swapping attempt.
Each time two chains a and b swap, all processes working on a have to wait
for chain b to reach the respective generation and vice versa. Reducing the
number of swap attempts (via numSwapPerGen) will improve your parallel
efficiency, but probably reduces your mixing between coupled chains (e.g., it
is less likely that the cold chain benefits from the hotter ones).

So while runtime efficiency probably is the weakest argument for employ-
ing chain-level parallelism, memory is a point to consider (also see section
8.3). Likelihood computation is the single dominating factor of memory con-
sumption. The formula for computing memory requirements (in Byte) of a
single chain in one run is

mem = 4 · 8 · r · p · (n− 2), (3)

where r is 4 for DNA and 20 for AA data, p is the number of unique site
patterns in your alignment and n is the number of taxa.

For executing m coupled chains (efficiently), you require m + 1 sets of
likelihood arrays, thus mem · (m + 1) byte. Even if data parallelism is fa-
vorable for your dataset, memory requirements may become prohibitive. If
you employ more processes, you will also increase the amount of memory
that is at your disposal. However, depending on the size of your dataset,
parallel efficiency of data parallelism will decrease at some point. This is
where chain-level parallelism should be considered.

28

Using chain-level will allow you to increase the number of processes, while
still enough work load is assigned to each process.

As described above you need an additional set of likelihood arrays. Unfor-
tunately, this rule still holds, when chain-level parallelism is employed. As-
suming, you run mp coupled chains in parallel, you will need mem · (m+mp)
byte. For a discussion on how to reduce mp, please see Section 8.3.

8.2.3 On Data Parallelism

Data parallelism means that the unique site patterns of your alignment are
spread out across processes. As discussed at the beginning of this section
you should choose the number of processes such that the processes involved
in computing the likelihood of a single tree are distributed across as few
computing nodes as possible.

Since it takes longer to compute the likelihood of a larger pattern (i.e.,
your alignment contains more taxa), it is hard to say until which point data
parallelism can be employed efficiently. As a rule of thumb each process
should at least be responsible for at least 100 sites. If a parallel run of
ExaBayes is started, ExaBayes prints the load distribution (i.e., how many
pattern are assigned to each process) before starting the computation.

8.3 Saving Memory

As mentioned earlier, with ExaBayes you can do Bayesian MCMC on align-
ments of which the size is only limited by the total memory you have available
in your computing center.

In addition to that, ExaBayes implements techniques to reduce the overall
memory footprint.

The -M x option allows you to trade runtime for reduced memory con-
sumption. The higher x, the slower but less memory-intensive are the likeli-
hood computations. Remember, that for any -M x ExaBayes will yield the
exact same results with the limitations described in section 8.5.

This is particularly relevant, if you use chain-level parallelism, since in-
creased parallelism also increases the memory-overhead as explained in sec-
tion 8.2.2. Recall that for x=0, you need the (m + mp) sets of likelihood ar-
rays (where m is the number of coupled chains and mp the number of coupled
chains executed in parallel). This is, because ExaBayes uses an additional
set of likelihood arrays to evaluate the likelihood of a new proposal and saves
the previous likelihood arrays for the case of rejection of the proposal.

With -M 1, you can instruct ExaBayes to not save likelihood arrays for
arrays for inner nodes that are (recursively) computed from two leave (resp.

29

tip) nodes. These nodes are particularly fast to compute, so you will not
loose too much runtime. For a balanced binary tree (best case), the memory
consumption of the saved likelihood arrays (adding the mp to the equation
of memory consumption) is reduced by more than 50%. In the worst case (a
comb-/caterpillar-like tree), the memory consumption is merely reduced by
1 array.

When run with -M 2, ExaBayes will only save likelihood arrays for the
most expensive kind of nodes. These are nodes that have two inner nodes as
their descendants. In terms of memory consumption, a balanced binary tree
is the worst case (saving only > 50% of the additional likelihood arrays). In
the best case (here the comb-like tree), ExaBayes will not save any addition
likelihood arrays.

For -M 3, ExaBayes by default does not save any likelihood arrays. The
run will be executed substantially slower (but still less than a factor of 2),
but specifically if you run a lot of chains in parallel, the factor (m + mp) in
the memory consumption formula is reduced to m.

Aside from that, ExaBayes implements a subtree equality vector-technique,
that allows you to save memory for dataset that contain many gaps or un-
determined characters (see [2]). The amount of memory you save is pro-
portional to the amount of missing data and the runtime penalty should be
negligible (resp., there are instances where this actually increases runtime
performance).

8.4 Highly Partitioned Runs

In a parallel setting, it is less straight-forward to efficiently execute an anal-
ysis, if the alignment is highly partitioned. The issue of load distribution in
case of data parallelism is discussed in section 8.2.3. The upshot is that you
should, whether all processes of a parallel unit have about the same portion
of the overall data. In parallel runs, ExaBayes initially lists, how many char-
acters, partitions, (coupled) chains and runs are assigned to each processor.
For efficiency it is important that the option proposalSets is by default set
to true (default).

For assigning data (possibly a huge number of partitions) to processors,
ExaBayes employs the same algorithm as ExaML [3].

8.5 Note on Reproducibility

ExaBayes comes with a strong guarantee of reproducibility.
Ideally, the same seed, configuration file and alignment file have to result

in the exact same outcome (e.g., topology/parameter samples) regardless

30

whether yggdrasil or exabayes were employed. This should hold for any
kind of command line parameter governing the specifics of how calculations
are to be performed. Furthermore, repeated continuations from a checkpoint
file should not influence the output either.

Any change in the configuration file potentially interferes with perfect
reproducibility (e.g., increasing the checkpoint frequency).

When parallelism is involved, this guarantee does not hold necessarily.
The reason for this is indeterminism in the calculation of the likelihood, when
conducted on multiple processors. Compensating for this problem comes
at the cost of runtime performance, thus this has not been implement in
ExaBayes.

In other words: running ExaBayes with a different number of processes
theoretically may yield different results (however, we have not observed this
for any MPI implementations yet).

All of the above does not influence the correctness of the results, however
it limits the guarantee that the chain is in the exact same state.

9 File Format: Model/Partitioning file
If you want to partition your data, you have to provide a model file either to
the parser utility or to yggdrasil/exabayes (via -q). In brief, this format
is identical to the raxml model-file format, except that instead of specifying
specific protein substitution matrices, you must identify a protein partition
with PROT instead of a matrix name such as LG.

The example file below demonstrates the syntax of this file format:

DNA, gene1=1-300
DNA, gene2-codonPos1=301-500/3
DNA, gene2-codonPos2=302-500/3
DNA, gene2-codonPos3=303-500/3
PROT, protId=501-800
DNA, composit=801-1000,1101-1200
DNA, gene3=1000-1100

The bottom line is:

• data type identifier: DNA or PROT (followed by comma)

• partitionName (followed by equal sign)

• alignment positions:

31

– range component, see "gene1"

– strided range (useful for codon positions), see "gene2-codonPos1",
"gene2-codonPos2" and "gene2-codonPos3". Notice that the start-
ing position of the range is incremented for the second and third
codon position.

– combining elements, see "composit". You can combine any ele-
ment using a comma.

For concatenating a large number of alignments efficiently, we distribute
this tool separately from ExaBayes. It automatically creates the appropriate
model file, although you will have to manually set the data type for amino
acid partitions. Please use with caution.

A side note on efficiency: partitioning your data makes likelihood cal-
culation less efficient. If for instance you partition your data and link all
parameters across all partitions, then you could have provided an unparti-
tioned alignment and the MCMC sampling would require less computational
resources.

10 Trading mixing efficiency versus runtime
As of version 1.4, ExaBayes comes with more advanced guided proposals
that have considerable runtime requirements. If you have trouble achieving
convergence on your dataset, you may want to increase the usage of these
expensive proposals. On the other hand, if you find your dataset to be easily
resolvable and you want as many samples from your runtime as possible, you
may want to switch to cheaper proposals. Here, we explain your options for
both cases (see Section 6.4 for information on how to configure proposals).

In certain cases, we have observed that the NR-based Gamma proposal
(blDistGamma) increases the probability that chains get stuck (specifically,
if started from a random tree). Here, it may be useful to run ExaBayes
with the default branch length proposal configuration of version 1.3 (branch
length multiplier with weight 15, node slider with weight 5, blDistGamma
with weight 0).

Currently, the posterior-guided SPR (likeSPR) has a rather low weight,
because of its excessive runtime costs. If runtime is not a problem, we recom-
mend to increase the weight of this proposal on hard datasets. For instance,
you may want to go for a configuration that only uses the parsimony-guided
SPR and the posterior-guided SPR, both with weight 10 (list remainder
topology proposals and set its weight to 0). This setting allowed us to re-
solve hard datasets with up to 500 taxa which could not be resolved with the

32

https://github.com/aberer/concat-aln

previously implemented proposals. The radius of the posterior-guided SPR
is an important factor concerning runtime/mixing efficiency. In principle it
suffices to set it as large as the largest SPR move that you expect (e.g., as-
sume you know that an unstable subtree usually has regrafting locations in
a radius of 3 around the pruning location). Radii should be chosen based
upon the dual logarithm of the number of taxa in your tree (start out with
this value and modify).

You may want to turn the posterior-guided SPR off and switch back to
default config from ExaBayes 1.3. For doing so, enable the eTBR, eSPR, stNNI
and parsSPR and assign a weight of 5 to them (0 for likeSPR). We specifically
do not recommend the eTBR, since true TBR moves (that are not actually
SPR or NNI moves) are rarely accepted.

Proposing branch lengths simultaneously with topology (moveOptode > 0
) may in some cases increase convergence behavior and may allow extremely
accurate estimates of split posterior probabilities. However, specifically in the
presence of a posterior-guided SPR move, this option becomes very expensive
(and thus the radius for the likeSPR should be chosen conservatively).

A cheap option to decrease burn-in time and potentially to increase mix-
ing efficiency is to increase the radius of the parsimony guided SPR. Since,
computing the parsimony score is very cheap, you do not have to expect con-
siderable runtime penalties for using arbitrarily high values here (generally
recommended).

11 Citation
ExaBayes has been published in Molecular Biology and Evolution.

The respective BibTex entry for citing the advance online publication is:

@article{aberer2014exabayes,
title={ExaBayes: Massively Parallel Bayesian Tree Inference for
the Whole-Genome Era},
author={Aberer, Andre J and Kobert, Kassian and Stamatakis, Alexandros},
journal={Molecular Biology and Evolution},
pages={msu236},
year={2014},
publisher={Oxford University Press}

}

33

http://mbe.oxfordjournals.org/content/early/2014/08/16/molbev.msu236.abstract

12 References

References
[1] Alexei J Drummond, Marc a Suchard, Dong Xie, and Andrew Rambaut.

Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular
biology and evolution, 29(8):1969–73, August 2012.

[2] Fernando Izquierdo-Carrasco, Stephen a Smith, and Alexandros Sta-
matakis. Algorithms, data structures, and numerics for likelihood-based
phylogenetic inference of huge trees. BMC bioinformatics, 12(1):470, Jan-
uary 2011.

[3] Kassian Kobert, Tomáš Flouri, Andre Aberer, and Alexandros Sta-
matakis. The divisible load balance problem and its application to phy-
logenetic inference. In Algorithms in Bioinformatics, pages 204–216.
Springer, 2014.

[4] Clemens Lakner, Paul van der Mark, John P Huelsenbeck, Bret Larget,
and Fredrik Ronquist. Efficiency of Markov chain Monte Carlo tree
proposals in Bayesian phylogenetics. Systematic biology, 57(1):86–103,
February 2008.

[5] Fredrik Ronquist, Maxim Teslenko, Paul van der Mark, Daniel L Ayres,
Aaron Darling, Sebastian Höhna, Bret Larget, Liang Liu, Marc a
Suchard, and John P Huelsenbeck. MrBayes 3.2: efficient Bayesian phylo-
genetic inference and model choice across a large model space. Systematic
biology, 61(3):539–42, May 2012.

[6] A. Stamatakis and A.J. Aberer. Novel parallelization schemes for large-
scale likelihood-based phylogenetic inference. In Parallel Distributed Pro-
cessing (IPDPS), 2013 IEEE 27th International Symposium on, pages
1195–1204, 2013.

[7] Alexandros Stamatakis. RAxML-VI-HPC: maximum likelihood-based
phylogenetic analyses with thousands of taxa and mixed models. Bioin-
formatics, 22(21):2688–2690, November 2006.

[8] Alexandros Stamatakis, Andre J Aberer, Christian Goll, Stephen A
Smith, Simon A Berger, and Fernando Izquierdo-Carrasco. RAxML-
Light: a tool for computing terabyte phylogenies. Bioinformatics (Oxford,
England), 28(15):2064–6, August 2012.

34

	Quick Start
	Scope of ExaBayes: What is it? What is it not?
	Installation
	Executing downloaded executables
	Compiling ExaBayes from source
	Installation of ExaBayes Into File Systems

	Tutorial and Workflow
	Basic Workflow
	Partitioned Alignment

	Command Line Options
	Mandatory Arguments
	Optional Arguments

	Configuration File
	Declaring and Linking Parameters
	Declaring Priors for Parameters
	Configuring the Run
	Configuring Proposals

	Pre-/post-processing utilities
	parser
	postProcParam
	sdsf
	credibleSet
	extractBips
	consense

	ExaBayes on Clusters/Supercomputers
	TL;DR summary
	Choosing the right kind of parallelism
	Saving Memory
	Highly Partitioned Runs
	Note on Reproducibility

	File Format: Model/Partitioning file
	Trading mixing efficiency versus runtime
	Citation
	References

