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1 About RAxML

RAxML (Randomized Axelerated Maximum Likelihood) is a program for sequential and parallel Maximum
Likelihood [1] based inference of large phylogenetic trees. It has originally been derived from fastDNAml

which in turn was derived from Joe Felsentein’s dnaml which is part of the PHYLIP [2] package.

1.1 What’s new in version 7.0.4?

• Added taxon-name error checking

• Increased allowed taxon-name length to 256 characters

• Amended constraint and backbone tree options -r and -g to work under rapid bootstrapping option

• Added option to compute pair-wise ML distances between taxa

1.2 RAxML 7.0.4

In addition to the sequential version, RAxML offers two ways to exploit parallelism: fine-grained parallelism
that can be exploited on shared memory machines or multi-core architectures and coarse-grained paral-
lelism that can be exploited on Linux clusters.

The current version of RAxML is a highly optimized program, which handles DNA and AA alignments
under various models of substitution and several distinct methods of rate heterogeneity.

In addition, it implements a significantly improved version (run time improvement of factor 2.5) of the
fast rapid hill climbing algorithm [3] compared to the algorithm described in [4]. At the same time these new
heuristics yield qualitatively comparable results.

In addition to this, it also offers a novel—unpublished—rapid Bootstrapping [5] algorithm that is faster by
at least one order of magnitude than all other current implementations (RAxML 2.2.3, GARLI [6], PHYML [7]).
Once again, the results obtained by the rapid bootstrapping algorithm are qualitatively comparable to those
obtained via the standard RAxML BS algorithm and, more importantly, the deviations in support values be-
tween the rapid and the standard RAxML BS algorithm are smaller than those induced by using a different
search strategy, e.g., GARLI or PHYML. This rapid BS search can be combined with a rapid ML search on
the original alignment and thus allows users to conduct a full ML analysis within one single program run.

Some data-structures have been changed and functions re-written. Those technical changes yield an
additional run time improvement of around 5%.

The program has been developed to be able to handle extremely large datasets, such as a single–
gene 25,000-taxon alignment of protobacteria (length approximately 1,500 base pairs, run time on a single
CPU: 13.5 days, memory consumption: 1.5GB) or a large multi-gene alignment of 2,100 mammals with a

1Exelixis is the Greek word for evolution
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length of over 50,000 base pairs. We also inferred trees for a dataset of 250 taxa and about 500,000 base-
pairs, the—to the best of the author’s knowledge—largest dataset analyzed under ML to date, on 1,024
processors of a Blue-Gene supercomputer [8]. The BlueGene version is a specialized unreleased RAxML
version (available upon request), but the concepts developed in this paper are currently being integrated
into the standard RAxML release.

Finally RAxML, despite being developed for handling large datasets, also does fine on smaller to
medium–sized datasets (see [9] for a respective performance study on datasets up to 150 taxa).

1.3 RAxML Community Contributions

Several people have contributed to make RAxML easier to use and make it available on more platforms. I
would like to express my gratitude to all of them.

My colleague Frank Kauff (now at University of Kaiserslautern, fkauff@rhrk.uni-kl.de, previously
at Duke University) has written a cool biopython wrapper called PYRAXML2. This is a script that reads
NEXUS-style data files and prepares the necessary input files and command-line options for RAxML.You
can download the Beta-version at http://www.lutzonilab.net/downloads/.

My colleague Olaf Bininda-Emonds (olaf.bininda@uni-jena.de) has written a perl script that provides
a wrapper around RAxML to easily analyze a set of data files according to a common set of search criteria.
It also organizes the RAxML output into a set of subdirectories. You can download it at http://www.
personal.uni-jena.de/∼b6biol2/ProgramsMain.html.

James Munro (munroj01@student.ucr.edu) at UCR has put up a web-site that provides a guide for in-
stalling RAxML on MACs: http://hymenoptera.ucr.edu/index.php?option=com content&task=view&id=

62&Itemid=8.
Dave Carmean (carmean@sfu.ca) at Simon Fraser University has kindly assembled a RAxML executable

for MACs and put up a web-site entitled “Installing and running RAxML on a Mac in less than a minute”:
http://www.sfu.ca/biology/staff/dc/raxml/.

Graham Jones (http://www.sightsynthesis.co.uk/) has provided invaluable help by contributing the
Windows executable of RAxML.

Finally, Andreas Tille at the Robert Koch-Institute (tillea@rki.de) has pushed forward the integration
of RAxML and AxParafit (another open-source Bioinformatics code I have developped, see [10]) into the
Debian-med package (for details on this project see: http://www.debian.org/devel/debian-med/).

1.4 RAxML Web-Servers

Together with Jacques Rougemont (formerly at the Vital-IT Unit of the Swiss Institute of Bioinformatics,
now at EPFL, jacques.rougemont@epfl.ch) and Paul Hoover at the San Diego Supercomputer Center
(phoover@sdsc.edu) we have developed two RAxML Web-Servers that offer the novel rapid RAxML Boot-
strapping algorithm and thorough ML searches on the original alignments. The one in Switzerland is located
at the Vital-IT unit of the SIB: http://phylobench.vital-it.ch/raxml-bb/ and the one at SDSC runs on
the CIPRES project cluster: http://8ball.sdsc.edu:8889/cipres-web/Bootstrap.do.

In addition, RAxML is currently being integrated into the Distributed European Infrastructure for Su-
percomputing Applications system (http://www.deisa.org/), but I am not directly involved in this, and
only provide some occasional support. The RAxML-DEISA integration is currently supposed to be in the
beta-testing phase.

1.5 Citing RAxML

If you use RAxML please always cite the following paper: Alexandros Stamatakis : “RAxML-VI-HPC:
Maximum Likelihood-based Phylogenetic Analyses with Thousands of Taxa and Mixed Models”, Bioinfor-
matics 22(21):2688–2690, 2006 [4].

In additon, when using the Web-Servers or the rapid Bootstrapping algor ithm please also cite :
Alexandros Stamatakis, Paul Hoover, and Jacques Rougemont: “A Rapid Bootstrap Algorithm for the
RAxML Web-Servers”, to be published.
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In case you use the parallel Pthreads-based version please also cite Michael Ott, Jaroslaw Zola,
Srinivas Aluru, Alexandros Stamatakis: “Large-scale Maximum Likelihood-based Phylogenetic Analysis on
the IBM BlueGene/L”, in Proceedings of ACM/IEEE Supercomputing conference 2007 [8]. While this paper
does not really describe the Pthreads-based version (information on Pthreads: https://computing.llnl.
gov/tutorials/pthreads/, manuscript in preparation) an analogous parallelization scheme is used which
is more efficient than the previous OpenMP-based shared memory implementation described in [11].

Finally, if you used the CAT approximation of rate heterogeneity (see Section 2.2) in your analyses,
please also cite Alexandros Stamatakis: “Phylogenetic Models of Rate Heterogeneity: A High Performance
Computing Perspective”, in Proceedings of IPDPS2006 [12].

In case that you use RAxML as a component of larger software packages or Bioinformatics pipelines,
I would greatly appreciate if you could add a text box or analogous appropriate information that RAxML
should also be cited separately, when used.

If you want RAxML to be further maintained and extended in the future it is in your own interest to
properly cite the program!

2 IMPORTANT WARNINGS

2.1 RAxML Likelihood Values

It is very important to note that the likelihood values produced by RAxML can not be directly compared
to likelihood values of other ML programs. However, the likelihood values of the current version are much
more similar to those obtained by other programs with respect to previous releases of RAxML (usually be-
tween +/− 1.0 log likelihood units of those obtained e.g. by PHYML,IQPNNI [13], or GARLI). Note, that the
deviations between PHYML/RAxML and GARLI likelihood values can sometimes be larger because GARLI
uses a slightly different procedure to compute empirical base frequencies (Derrick Zwickl, personal com-
munication) while the method in RAxML is exactly the same as implemented in PHYML. These deviations
between RAxML/PHYML on the one side and GARLI on the other side appear to be larger on long multi-
gene alignments. Also note, that likelihood values obtained by different RAxML versions, especially those
prior to version 2.1.0 should not be directly compared with each other either. The same holds for compar-
isons of likelihood values between RAxML-VI-HPC v2.2.3 and RAxML 7.0.4! This is due to frequent code
and data structure changes in the likelihood function implementation and model parameter optimization
procedures!

Thus, if you want to compare topologies obtained by distinct ML programs make sure that you optimize
branch lengths and model parameters of final topologies with one and the same program . This can be
done by either using the respective RAxML option (-f e) or, e.g., the corresponding option in PHYML [7].

PERSONAL OPINION: Differences in Likelihood scores:
In theory all ML programs implement the same mathematical function and should thus yield the same

likelihood score for a fixed model and a given tree topology. However, if we try to implement a numerical
function on a finite machine we will unavoidably obtain rounding errors. Even if we change the sequence (or
if it is changed by the compiler) of some operations applied to floating point or double precision arithmetics
in our computer we will probably get different results 2. In my experiments I have observed differences
among final likelihood values between GARLI, IQPNNI, PHYML, RAxML (every program showed a different
value). You can also experiment with this by removing the gcc optimization flag -O3 in the RAxML Makfile.
This will yield much slower code, that is in theory mathematically equivalent to the optimized code, but will
yield slightly different likelihood scores, due to re-ordered floating point operations.

My personal opinion is that the topological search (number of topologies analyzed) is much more im-
portant than exact likelihood scores to obtain “good” final ML trees. Especially on large trees with more
than 1,000 sequences the differences in likelihood scores induced by the topology are usually so large, that
a very rough parameter optimization with an ǫ of 1 log likelihood unit (i.e., if the difference ǫ between two

2As an example for this you might want to implement a dense matrix multiplication on doubles and then re-order the instructions
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successive model parameter optimization iterations is ≤ 1.0 we stop the optimization) will already clearly
show the differences.

Note that, if you perform a bootstrap analysis you don’t need to worry too much about likelihood values
anyway, since usually you are only interested in the bootstrapped topologies.

2.2 The GTRCAT Mystery

WARNING: It is not a good idea to use the CAT approximiation for datasets with less than 50 taxa, in general
there is not enough data per alignment column available to reliably estimate the per-site rate parameters.
CAT has been designed to accelerate the computations on large datasets with many taxa! Please read the
respective paper [12] to understand how CAT works, what the rate categories are (they are conceptually
different from the discrete rate categories of the Γ model), and what the limitations of this method are.

The GTRCAT approximation is a computational work–around for the widely used (see [14] for interesting
usage statistics) General Time Reversible (GTR [15]) model of nucleotide substitution under the Γ model
of rate heterogeneity [16, 17]. CAT is used in an analogous way to accomodate searches with rate hetero-
geneity in the AA substitution models.

There is a paper available [12] which describes what GTRCAT is and why I don’t like GTRGAMMA despite
the fact that Γ is a beautiful Greek letter. The main idea behind GTRCAT is to allow for integration of rate
heterogeneity into phylogenetic analyses at a significantly lower computational cost (about 4 times faster)
and memory consumption (4 times lower). Essentially, GTRCAT represents a rather un-mathematical “quick
& dirty” approach to rapidly navigate into portions of the tree space, where the trees score well under
GTRGAMMA. However, due to the way individual rates are optimized and assigned to rate categories in GTRCAT

(for details on this please read the paper [12]), the likelihood values computed by GTRCAT are completely
meaningless. This means: NEVER COMPARE ALTERNATIVE TREE TOPOLOGIES USING THEIR CAT-
based LIKELIHOOD VALUES! You will probably obtain a biased assessment of trees. This is the reason
why GTRCAT is called approximation instead of model. The same applies to the CAT approximation when
used with AA data.

Finally, note that, in the few real-world phylogenetic studies I have worked on so far in collaboration with
Biologists, we never received “nasty” reviewer comments for using the CAT approximation. A very recent
phylogenetic analysis with RAxML in Nature also used the CAT approximation [18].

3 Installation, Compilers, Platforms

RAxML 7.0.4 can be download at icwww.epfl.ch/∼stamatak as open source code under the GNU General
Public Licence (GPL). To install RAxML 7.0.4 download the RAxML-7.0.4.tar.gz archive and uncompress
it.

This version comes in three flavors:

1. raxmlHPC just the standard sequential version, compile it with gcc by typing make -f Makefile.gcc

for LINUX and MAC.

2. raxmlHPC-PTHREADS the Pthreads-parallelized version of RAxML which is intended for shared-memory
and multi-core architectures. It is compiled with the gcc compiler by typing make -f Makefile.PTHREADS

or make -f Makefile.PTHREADS.MAC on MACs.

3. raxmlHPC-MPI the MPI-parallelized version for all types of clusters to perform parallel bootstraps, rapid
parallel bootstraps, or multiple inferences on the original alignment, compile with the mpicc (MPI)
compiler by typing make -f Makefile.MPI.

Other compilers: It might make sense to use the now much improved Intel-compiler icc instead of gcc
on some systems. The icc version 10.0 I have on my laptop produces 20-30% faster code than gcc.

IMPORTANT WARNING FOR MPI and PTHREADS VERSIONS: If you want to compile the MPI or
PTHREADS version of RAxML but have previously compiled the sequential version, make sure to remove
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all object files of the sequential code by typing “rm *.o”, everything needs to be re-compiled for MPI and
PTHREADS!

3.1 When to use which Version?

The use of the sequential version is intended for small to medium datasets and for initial experiments to
determine appropriate search parameters. However, by using the rapid BS algorithm, you can conduct a
full ML analysis with RAxML on single-gene datasets up to 2,000 taxa within 2-3 days on your desktop!

The Pthreads version will work well for very long alignments, but performance is extremely hardware-
dependent! It currently appears to scale best on AMD (shared memory nodes as well as the recent multi-
core platforms) and the new SUN x4600 systems, while scalability is significantly worse on current Intel
architectures. It also scales well on the SGI Altix, which is very large shared-memory supercomputer
architecture.

Even for short alignments (1,900 taxa, 1,200bp, DNA data) we observed speedups of around factor
6.5 on an 8-way shared memory Opteron processor on the CIPRES (CyberInfrastructure for Phyligenetic
RESearch http://www.phylo.org) cluster. For a long alignment (125 taxa, 20,000 base-pairs, DNA) we
observed significant super-linear speedups of around 10-11 on the 8-way CIPRES SMP nodes (those are
traditional shared-memory nodes, not multi-cores). In general, the Pthreads version is more efficient, i.e.,
yields higher parallel efficiency and better speedups, than the previous OpenMP-based [11] version. In
addition, it is easier to compile, because you do not need an OpenMP compiler any more, just the Pthreads
library which is pretty much available by default on all Linux and MAC-based systems. WARNING: Make
sure to specify the exact number of CPUs available on your system via the -T option, if you start more
threads than you have CPUs available, there will be a significant performance decrease!

The MPI-version is for executing really large production runs (i.e. 100 or 1,000 bootstraps) on a LINUX
cluster. You can also perform multiple inferences on larger datasets in parallel to find a best-known ML
tree for your dataset. Finally, the novel rapid BS algorithm and the associated ML search have also been
parallelized with MPI.

WARNING: REDUCED FUNCTIONALITY OF MPI-VERSION: The current MPI-version only works prop-
erly if you specify the “-#” or “-N” option in the command line, since it has been designed to do multiple
inferences or rapid/standard BS searches in parallel! For all remaining options, the usage of this type of
coarse-grained parallelism does not make much sense!

The best hardware to run RAxML on is currently the AMD Opteron [11] architecture.

3.2 Processor Affinity and Thread Pinning with the Pthreads V ersion

An important aspect if you want to use the Pthreads version of the program is to find out how your operating
system/platform handles processor affinity of threads. Within the shared-memory or multi-core context
processor affinity means that if you run e.g. 4 threads on a 4-way CPU or 4 cores each individual thread
should always run on the same CPU, i.e. thread0 on CPU0, thread1 on CPU1 etc. This is important for
efficiency, since cache entries can be continuously re-used if a thread, which works on the same part of
the shared memory space, remains on the same CPU. If threads are moved around, e.g.,thread0 is initially
executed on CPU0 but then on CPU4 etc. the cache memory of the CPU will have to be re-filled every time a
thread is moved. With processor affinity enabled, performance improvements of ≈ 5% have been measured
on sufficiently large and thus memory-intensive datasets.

On multi-core systems the analysis of memory access patterns and cache congestion is more com-
plicated, we are currently looking at this and will provide additional information and hopefully appropraite
solutions soon.

Version 7.0.4 now contains a function that will automatically pin threads to CPUs, i.e., enforce thread
affinity, under LINUX/UNIX. This function might occasionally cause some error messages during compila-
tion of RAxML. If this happens please send an email to stamatakis@bio.ifi.lmu.deand ottmi@in.tum.de.
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4 The RAxML Formats, Options & Output Files

4.1 Input Alignment & Input Tree Formats

The input alignment format of RAxML is relaxed interleaved or sequential PHYLIP . “Relaxed” means that
sequence names can be of variable length between 1 up to 256 characters. If you need longer taxon names
you can adapt the constant #define nmlngth 256 in file axml.h appropriately. Moreover, RAxML should
be less sensitive with respect to the formatting (tabs, insets, etc) of interleaved PHYLIP files.

The input tree format is Newick (see http://evolution.genetics.washington.edu/phylip/newicktree.

html), the RAxML input trees must not be comprehensive , i.e., need not contain all taxa.

4.2 Alignment Error Checking

I recently noticed that a lot of alignments should be checked for the following errors/insufficiencies before
running an analysis with RAxML or any other phylogenetic inference program.

RAxML will now analyze the alignment and check for the following errors:

Identical Sequence name(s) appearing multiple times in an alignment, this can easily happen when you
export a standard PHYLIP-file from some tool which truncates the sequence names to 8 or 10 char-
acters.

Identical Sequence(s) that have different names but are exactly identical. This mostly happens when you
excluded some hard-to-align alignment regions from your alignment.

Undetermined Column(s) that contain only ambiguous characters that will be treated as missing data,
i.e. columns that entirely consist of X, ?, *, - for AA data and N, O, X, ?, - for DNA data.

Undetermined Sequence(s) that contain only ambiguous characters (see above) that will be treated as
missing data.

Prohibited Character(s) in taxon names taxon names that contain any form of whitespace character, like
blanks, tabulators, and carriage returns, as well as one of the following prohibited characters: :,();[].

In case that RAxML detects Identical Sequences and/or Undetermined Columns and was executed,
e.g., with -n alignmentName it will automatically write an alignment file called alignmentName.reduced

with Identical Sequences and/or Undetermined Columns removed. If this is detected for a multiple model
analysis a respective model file modelFileName.reduced will also be written. In case RAxML encounters
identical sequence names or undetermined sequences or illegal characters in taxon names it will exit with
an error and you will have to fix your alignment.

4.3 Program Options

raxmlHPC[-MPI|-PTHREADS] -s sequenceFileName

-n outputFileName

-m substitutionModel

[-a weightFileName]

[-b bootstrapRandomNumberSeed]

[-c numberOfCategories]

[-d]

[-e likelihoodEpsilon]

[-E excludeFileName]

[-f a|b|c|d|e|g|h|i|j|m|n|o|p|s|t|w|x]

[-g groupingFileName]

[-h]

[-i initialRearrangementSetting]
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[-j]

[-k]

[-l sequenceSimilarityThreshold]

[-L sequenceSimilarityThreshold]

[-M]

[-o outGroupName1[,outGroupName2[,...]]]

[-p parsimonyRandomSeed]

[-P proteinModel]

[-q multipleModelFileName]

[-r binaryConstraintTree]

[-t userStartingTree]

[-T numberOfThreads]

[-u multiBootstrapSearches]

[-v]

[-w workingDirectory]

[-x rapidBootstrapRandomNumberSeed]

[-y]

[-z multipleTreesFile]

[-#|-N numberOfRuns]

Depending on the compiler you used and the platforms that are at your disposal, you will have three alter-
native executables:

1. raxmlHPC is just the sequential version.

2. raxmlHPC-MPI is the parallel coarse-grained version. It can be used if you have a LINUX cluster
available and want to perform multiple analysis or multiple (rapid) bootstraps, i.e. in combination with
the -#|-N or -#|-N and -b,-x or -f a -x options. Note, that if you do not specify -#|-N the parallel
MPI code will not work properly!

3. raxmlHPC-Pthreadsonly makes sense if you have access to a shared–memory or multi-core machine.
Note that, -N can be used as an alternative to -# since the # character seems to cause problems with
some parallel job submission systems, because it is sometimes used to start comments.

The options in brackets [] are optional, i.e., must not be specified, whereas RAxML must be provided
the sequence file name with -s and the output file(s) name appendix with -n and the desired model of DNA
or AA substitution with -m.

Let’s have a look at the individual options now:

-a weightFileName

This option specifies the name of a column weight file, which allows you to assign individual weights to each
column of the alignment. The default is that each column has the weight 1. The weights in the weight file
must be integers separated by any type and number of whitespaces within a separate file. In addition, there
must of course be as many weights as there are columns in your alignment.

The contents of an example weight file would look like this:

5 1 1 2 1 1 1 1 1 1 1 2 1 1 3 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 4 1 1

Example: raxmlHPC -a wgtFile -s alg -m GTRCAT -n TEST.

-b bootstrapRandomNumberSeed

This option allows you to turn on non-parametric bootstrapping [5]. To allow for reproducibility of runs
in the sequential program, you have to specify a random number seed, e.g. -b 123476. Note however,
that parallel bootstraps with the parallel version raxmlHPC-MPI are not reproducible despite the fact that you
specify a random number seed. They are also not reproducible for the sequential version in case you do
not provide a fixed starting tree with -t or a parsimony random seed via -p.
Example: raxmlHPC -b 12345 -# 100 -s alg -m GTRCAT -n TEST.
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-c numberOfCategories

This option allows you to specify the number of distinct rate categories, into which the individually optimized
rates for each individual site are “thrown” under -m GTRCAT. The results in [12] indicate that the default of
-c 25 works fine in most practical cases.
Example: raxmlHPC -c 40 -s alg -m GTRCAT -n TEST.

-d

This option allows you to start the RAxML search with a complete random starting tree instead of the
default Maximum Parsimony starting tree. On smaller datasets (around 100–200 taxa) it has been observed
that this might sometimes yield topologies of distinct local likelihood maxima which better correspond to
empirical expectations.
Example: raxmlHPC -d -s alg -m GTRGAMMA -n TEST.

-e likelihoodEpsilon

This allows you to specify up to which likelihood difference, i.e., ǫ, the model parameters will be optimized
when you use either the GTRGAMMA or GTRMIX models or when you just evaluate final trees with the -f e

option. This has shown to be useful to quickly evaluate the likelihood of a bunch of large final trees of
more than 1,000 taxa because it will run much faster. I typically use e.g. -e 1.0 or -e 2.0 in order to
rapidly compare distinct final tree topologies based on their likelihood values. Note that, topology-dependent
likelihood-differences are typically far larger than 1.0 or 2.0 log likelihood units. The default setting is 0.1

log likelihood units which proves to be sufficient in most practical cases.
Example: raxmlHPC -e 0.00001 -s alg -m GTRGAMMA -n TEST.

-E

Used to specify an exclude file name, that contains a specification of alignment positions you wish to ex-
clude from your analysis. The format is similar to Nexus, the file shall contain entries like 100-200 300-400

to exclude, e.g. all columns between positions 100 and 200 as well as all columns between positions 300
and 400. Note that, the bounds, i.e., positions 100, 200, 300, and 400 will also be excluded. To exclude a
single column write, e.g., 100-100. This option will just make RAxML write a reduced alignment file without
the excluded columns that can then be used for the real analysis. If you use a mixed model, an appropriately
adapted model file will also be written.
Example: raxmlHPC -E excludeFile -s alg -m GTRCAT -q part -n TEST.
In this case the files with columns excluded will be named alg.excludeFile and part.excludeFile.

-f algorithm

This option allows you to select the type of algorithm/function you want RAxML to execute.

-f a: tell RAxML to conduct a rapid Bootstrap analysis and search for the best-scoring ML tree in one single
program run.
Example: raxmlHPC -f a -s alg -x 12345 -# 100 -m GTRCAT -n TEST.

-f b: when this is specified RAxML will draw the bipartitions using a bunch of topologies (typically boot-
strapped trees) specified with -z (see below) onto a single tree topology specified by -t (typically the
best-scoring ML tree).
Example: raxmlHPC -f b -t ref -z trees -m GTRCAT -s alg -n TEST.

-f c: just checks if RAxML can read the alignment.
Example: raxmlHPC -f c -t -m GTRCAT -s alg -n TEST.

-f d: DEFAULT, RAxML will execute the new (as of version 2.2.1) and significantly faster rapid hill-climbing
algorithm [3].
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-f e: RAxML will optimize the model parameters and branch lengths of a topology provided via the -t option
under GTRGAMMA or the respective AA substitution model under GAMMA.
Example: raxmlHPC -f e -t ref -m GTRGAMMA -s alg -n TEST

-f g: used to compute the per–site log Likelihoods for one ore more trees passed via -z. They will be written
to a Treepuzzle-formatted file [19], that can be read by CONSEL [20].
Example: raxmlHPC -f g -s alg -m GTRGAMMA -z trees -n TEST.

-f h: RAxML will compute a log likelihood test (SH-test [21]) between a best tree passed via -t and a bunch
of other trees passed via -z.
Example: raxmlHPC -f h -t ref -z trees -s alg -m GTRGAMMA -n TEST.

-f i: performs a really thorough standard bootstrap (in combination with -b option DOES NOT WORK with
-x). RAxML will refine the final BS tree under GAMMA and a more exhaustive algorithm.
Example: raxmlHPC -f i -b 12345 -# 100 -s alg -m GTRCAT -n TEST.

-f j: generates a bunch of bootstrapped alignment files from an original alignment file.
Example: raxmlHPC -f j -b 12345 -# 100 -s alg -m GTRCAT -n TEST.

-f m: RAxML will compare bipartitions between two bunches of trees passed via -t and -z respectively.
The program will return the Pearson correlation between all bipartitions found in the two tree files. A
file called RAxML_bipartitionFrequencies.outpuFileNamewill be printed that contains the pair-wise
bipartition frequencies of the two sets.
Example: raxmlHPC -f m -t trees1 -z trees2 -s alg -m GTRCAT -n TEST.

-f n: computes the log likelihood score of all trees contained in a tree file provided by -z under GAMMA or
GAMMA+P-Invar.
Example: raxmlHPC -f n -z trees -s alg -m GTRGAMMA -n TEST.

-f o: RAxML will execute the slower old search algorithm of version 2.1.3 [4], this is essentially just for
backward compatibility.

-f p: performs just pure stepwise MP addition of new sequences to an incomplete starting tree.
Example: raxmlHPC -f p -t ref -s alg -m GTRCAT -n TEST.

-f s: option can be used to split a multi-gene alignment into individual genes, provided a model file with -q.
This might be useful to select best-fitting models for individual partitions of an AA multi-gene alignment
or to infer per-partition trees in order to analyze tree compatibility.
Example: raxmlHPC -f s -q part -s alg -m GTRCAT -n TEST.

-f t: will perform -#|-N randomized tree searches, that always start from one fixed starting tree.
Example: raxmlHPC -f t -t ref -# 100 -s alg -m GTRCAT -n TEST.

-f w: will perform an ELW-test [22] on a bunch of input trees passed via -z. You will also need to specify
a BS seed via -b and and the number of replicates you want to compute via -#|-N. This test does
obvisouly not work under the CAT approximation.
Example: raxmlHPC -f w -z trees -# 100 -b 12345 -s alg -m GTRGAMMA -n TEST.

-f x: will compute ML-based pair-wise distances between all sequences in an alignment. RAxML will op-
timize ML model parameters on a user-defined tree provided via -t or simply compute and use a
Maximum Parsimony starting tree if no user-defined tree is provided. This option only works for the
Γ-based models of rate heterogeneity.
Example: raxmlHPC -f x -t tree -m GTRGAMMA -n TEST.

-g groupingFileName

This option allows you to specify an incomplete or comprehensive multifurcating constraint tree for the
RAxML search in NEWICK format. Initially, multifurcations are resolved randomly. If the tree is incomplete
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(does not contain all taxa) the remaining taxa are added by using the MP criterion. Once a comprehen-
sive (containing all taxa) bifurcating tree is computed, it is further optimized under ML respecting the given
constraints. Important: If you specify a non-comprehensive constraint, e.g., a constraint tree that does not
contain all taxa, RAxML will assume that the remaining taxa, that are not contained in the constraint topology
are unconstrained , i.e., these taxa can be placed in any part of the tree. As an example consider an align-
ment with 10 taxa: Loach, Chicken, Human, Cow, Mouse, Whale, Seal, Carp, Rat, Frog. If for exam-
ple you would like Loach, Chicken, Human, Cow to be monophyletic you would specify the constraint tree
as follows: ((Loach, Chicken, Human, Cow),(Mouse, Whale, Seal, Carp, Rat, Frog));. Moreover, if
you would like Loach, Chicken, Human, Cow to be monophyletic and in addition Human, Cow to be mono-
phyletic within that clade you could specify: ((Loach, Chicken, (Human, Cow)),(Mouse, Whale, Seal,

Carp, Rat, Frog)); If you specify an incomplete constraint: ((Loach, Chicken, Human, Cow),(Mouse,

Whale, Seal, Carp));, the two groups Loach, Chicken, Human, Cow and Mouse, Whale, Seal, Carp

will be monophyletic, while Rat and Frog can end up anywhere in the tree.

-h

If you call raxmlHPC -h this will print a summary of the program options to your terminal.

-i initialRearrangementSetting

This allows you to specify an initial rearrangement setting for the initial phase of the search algorithm. If you
specify e.g. -i 10 the pruned subtrees will be inserted up to a distance of 10 nodes away from their original
pruning point. If you don’t specify -i, a “good” initial rearrangement setting will automatically be determined
by RAxML (see Section 5.2.1 for further details).

-j

Specifies that RAxML shall write intermediate trees found during the search to a separate file after each
iteration of the search algorithm. The default setting, i.e. if you do not specify -j is that no checkpoints will
be written.

-k

Specifies that RAxML shall optimize branches and model parameters on bootstrapped trees as well as
print out the optimized likelihood. Note, that this option only makes sense when used with the GTRMIX or
GTRGAMMA models (or the respective AA models)!

-l

Specify a threshold for sequence similarity clustering. RAxML will then print out an alignment to a file
called sequenceFileName.reducedBy.threshold that only contains representative sequences for the in-
ferred clusters. The specified threshold must be between 0.0 and 1.0. RAxML uses the QT-clustering
algorithm [23] to perform this task. In addition, a file called RAxML_reducedList.outputFileName will be
written that contains clustering information. This option is turned off by default.
Example: raxmlHPC -s alg -m GTRCAT -l 0.95 -n TEST.

-L

Same functionality as -l above, but uses a less exhaustive and thus faster clustering algorithm. This is
intended for very large datasets with more than 20,000-30,000 sequences, and also turned off by default.
Example: raxmlHPC -s alg -m GTRCAT -L 0.95 -n TEST.

-m modelOfEvolution

Selection of the model of nucleotide substitution or amino acid substitution to be used.
NUCLEOTIDE MODELS
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-m GTRCAT: GTR approximation with optimization of individual per–site substitution rates and classifi-
cation of those individual rates into the number of rate categories specified by -c. This is only a
work-around for GTRGAMMA so make sure not to compare alternative topologies based on their GTRCAT
likelihood values. Therefore, you can not use GTRCAT in combination with -f e (tree evaluation) and
not in combination with multiple analyses on the original alignment (-#|-N) option. This is due to the
fact that the author assumes that you want to compare trees based on likelihoods if you do a multiple
run on the original alignment. If you specify e.g. -m GTRCAT and -# 10 the program will automatically
use GTRMIX (see below).

-m GTRMIX: This option will make RAxML perform a tree inference (search for a good topology) under
GTRCAT. When the analysis is finished RAxML will switch its model to GTRGAMMA and evaluate the final
tree topology under GTRGAMMA such that it yields stable likelihood values.

-m GTRGAMMA: GTR (General Time Reversible) model of nucleotide substitution [15] with the Γ model
of rate heterogeneity [17]. All model parameters are estimated by RAxML. The GTRGAMMA implemen-
tation uses 4 discrete rate categories which represents an acceptable trade-off between speed and
accuracy. Note that, this has been hard-coded for performance reasons, i.e. the number of discrete
rate categories can not be changed by the user.

-m GTRCAT GAMMA: Inference of the tree with site-specific evolutionary rates. However, here rates are
categorized using the 4 discrete GAMMA rates, following a formula proposed by Yang [17]. Evaluation
of the final tree topology is done under GTRGAMMA. This option is more for experimental purposes than
for everyday use.

-m GTRGAMMAI: Same as GTRGAMMA, but with estimate of proportion of invariable sites [24], though I still
don’t like the idea (see discussion in Section 6).

-m GTRMIXI: Same as GTRMIX, but with estimate of proportion of invariable sites.

-m GTRCAT GAMMAI: Same as GTRCAT_GAMMA, but with estimate of proportion of invariable sites.

AMINO ACID MODELS

Available AA models: Values for matrixName (see below): DAYHOFF [25], DCMUT [26], JTT [27], MTREV [28],
WAG [29], RTREV [30], CPREV [31], VT [32], BLOSUM62 [33], MTMAM [34]. With the optional F appendix you
can specify if you want to use empirical base frequencies. Please note, that for mixed models you
must in addition specify the per-gene AA model in the mixed model file (see -q option below).

-m PROTCATmatrixName[F]: AA matrix specified by matrixName (see above for a list) with optimization
of individual per–site substitution rates and classification of those individual rates into the number of
rate categories specified by -c. This is only a work-around for the GAMMA model of rate heterogeneity,
so make sure not to compare alternative topologies based on their PROTCAT-based likelihood values.
Therefore, you can not use PROTCAT in combination with -f e (tree evaluation) and not in combina-
tion with multiple analyses on the original alignment (-#|-N) option. This is due to the fact that the
author assumes that you want to compare trees based on likelihoods if you do a multiple run on the
original alignment. If you specify e.g. one of the -m PROTCAT... models and -# 10 the program will
automatically use the respective PROTMIX... model (see below).

-m PROTMIXmatrixName[F]: This option will make RAxML perform a tree inference (search for a good
topology) under PROTCAT... . When the analysis is finished RAxML will switch its model to the re-
spective PROTGAMMA... model and evaluate the final tree topology under PROTGAMMA... such that it
yields stable likelihood values.

-m PROTGAMMAmatrixName[F]: AA matrix specified by matrixName with the Γ model of rate hetero-
geneity. All free model parameters are estimated by RAxML. The GAMMA implementation uses 4 dis-
crete rate categories which represents an acceptable trade-off between speed and accuracy. Note
that, this has been hard-coded for performance reasons, i.e. the number of discrete rate categories
can not be changed by the user.
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-m PROTCAT GAMMAmatrixName[F]: Inference of the tree under specified AA matrix and site-specific
evolutionary rates. However, here rates are categorized using the 4 discrete GAMMA rates that are
assigned to sites following a formula by Yang. Evaluation of the final tree topology will be conducted
under specified AA matrix + GAMMA. This is mostly for experimental purposes.

-m PROTGAMMAImatrixName[F]: Same as PROTGAMMAmatrixName[F], but with estimate of proportion of
invariable sites.

-m PROTMIXImatrixName[F]: Same as PROTMIXmatrixName[F], but with estimate of proportion of invari-
able sites.

-m PROTCAT GAMMAImatrixName[F]: Same as PROTCAT_GAMMAmatrixName[F], but with estimate of pro-
portion of invariable sites.

-M

Switch on estimation of individual per-partition branch lengths. Only has effect when used in combination
with -q and an alignment partition file. Branch lengths for individual partitions will be printed to separate
files. A weighted average of the branch lengths is also computed by using the respective partition lengths
(number of columns per partition). Note that, this does not take into account the “gappyness” of partitions,
but I am currently not sure how to solve this problem. By default the -M option is turned off for partitioned
analyses, i.e., RAxML will compute a joined branch length estimate.
Example: raxmlHPC -s alg -m GTRGAMMA -q part -M -n TEST.

-n outputFileName

Specify the name of this run, according to which the various output files will be named.

-o outgroupName(s)

Specify the name/names of the outgroup taxa, e.g.,-o Mouse or -o Mouse,Rat. Don’t leave spaces between
the taxon names in the list! If there is more than one outgroup a check for monophyly will be performed. If
the outgroups are not monophyletic the tree will be rooted at the first outgroup in the list and a respective
warning will be printed.
Example: raxmlHPC -s alg -m GTRGAMMA -o Rat,Mouse -n TEST.

-p

Specify a random number seed for the parsimony inferences. This allows you and others to reproduce
your results (reproducible/verifiable experiments) and will help me debug the program. This option HAS NO
EFFECT in the parallel MPI version .
Example: raxmlHPC -s alg -m GTRGAMMA -p 12345 -n TEST.

-P proteinModel

Specify the file name of an external AA substitution model. The file proteinModel must contain a total of
420 floating point number entries in plain ASCII text which can be separated by any kind of whitespaces
(tabs, spaces, linebreaks, etc.). The first 400 entries are the substitution rates of the 20 by 20 AA matrix
(stored and interpreted in row first order, i.e., the first 20 entries correspond to the first row of the matrix)
and the last 20 entries (entries 401-420) are the base frequencies. It is important that the base frequencies
sum to 1.0+/-ǫ, since even relatively small deviations might cause numerical instability of AA models. The
400 entries of the 20 by 20 matrix must be symmetric, the program will check if this is the case. The entries
on the diagonal matrix will be disregarded, since they can be computed from the non-diagonal entries. You
still have to specify an AA substitution model via -m to tell the program that it has to read and analyze
an AA alignment. It will just extract this information from the respective string, however by specifying,
e.g., -m PROTGAMMAWAGF it will use empirical base frequencies instead of the frequencies specified in file
proteinModel.
Example: raxmlHPC -s alg -m PROTGAMMAWAG -p proteinModel -n TEST
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-q multipleModelFileName

This allows you to specify the regions of your alignment for which an individual model of nucleotide substi-
tution should be estimated. This will typically be useful to infer trees for long (in terms of base–pairs) multi-
gene alignments. If, e.g.,-m GTRGAMMA is used, individual α-shape parameters, GTR-rates, and empirical
base frequencies will be estimated and optimized for each partition. IMPORTANT CHANGE w.r.t. previous
versions: Since RAxML can now handle mixed DNA and AA alignments you MUST specify the type of data
in the partition file, before the partition name. For DNA data this just means that you have to add DNA to
each line in the partition file, for AA data this is done by specifying the respective AA substitution matrix you
want to use for a partition. If you want to do a mixed/partitioned analysis of a concatenated AA and DNA
alignment you can either specify -m GTRGAMMA or, e.g., -m PROTGAMMAWAG, the only thing that will
be extracted from the string passed via -m is the model of rate heterogeneity you want to use.

If you have a pure DNA alignment with 1,000bp from two genes gene1 (positions 1–500) and gene2

(positions 501–1,000) the information in the multiple model file should look as follows:

DNA, gene1 = 1-500

DNA, gene2 = 501-1000

If gene1 is scattered through the alignment, e.g. positions 1–200, and 800–1,000 you specify this with:

DNA, gene1 = 1-200, 800-1,000

DNA, gene2 = 201-799

You can also assign distinct models to the codon positions, i.e. if you want a distinct model to be esti-
mated for each codon position in gene1 you can specify:

DNA, gene1codon1 = 1-500\3

DNA, gene1codon2 = 2-500\3

DNA, gene1codon3 = 3-500\3

DNA, gene2 = 501-1000

If you only need a distinct model for the 3rd codon position you can write:

DNA, gene1codon1andcodon2 = 1-500\3, 2-500\3

DNA, gene1codon3 = 3-500\3

DNA, gene2 = 501-1000

As already mentioned, for AA data you must specify the transition matrices for each partition:

JTT, gene1 = 1-500

WAGF, gene2 = 501-800

WAG, gene3 = 801-1000

The AA substitution model must be the first entry in each line and must be separated by a comma from
the gene name, just like the DNA token above. You can not assign different models of rate heterogeneity to
different partitions, i.e., it will be either CAT, GAMMA, GAMMAI etc. for all partitions, as specified with -m.

Finally, if you have a concatenated DNA and AA alignment, with DNA data at positions 1–500 and AA
data at 501-1,000 with the WAG model the partition file should look as follows:

DNA, gene1 = 1-500

WAG, gene2 = 501-1000

Example: raxmlHPC -s alg -m GTRGAMMA -q part -n TEST.

-r constraintFileName
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This option allows you to pass a binary/bifurcating constraint/backbone tree in NEWICK format to RAxML.
Note, that using this option only makes sense if this tree contains less taxa than the input alignment. The
remaining taxa will initially be added by using the MP criterion. Once a comprehensive tree with all taxa
has been obtained it will be optimized under ML respecting the restrictions of the constraint tree.
Example: raxmlHPC -s alg -m GTRGAMMA -r constr -n TEST.

-s sequenceFileName

Specify the name of the alignment data file which must be in relaxed PHYLIP format. Relaxed means that
you don’t have to worry if the sequence file is interleaved or sequential and that the taxon names are too
long.

-t userStartingTree

Specifies a user starting tree file name which must be in Newick format. Branch lengths of that tree will
be ignored. Note, that you can also specify a non-comprehensive (not containing all taxa in the alignment)
starting tree now. This might be useful if newly aligned/sequenced taxa have been added to your alignment.
Initially, taxa will be added to the tree using the MP criterion. The comprehensive tree will then be optimized
under ML.
Example: raxmlHPC -s alg -m GTRGAMMA -t tree -n TEST.

-T

PTHREADS VERSION ONLY: Specify the number of threads you want to run. Make sure to set -T to at most
the number of CPUs you have on your machine, otherwise, there will be a huge performance decrease! This
option is set to 0 by default, the Pthreads version will produce an error if you do not set -T to at least 2.
Example: raxmlHPC-PTHREADS -T 4 -s alg -m GTRGAMMA -n TEST.

-u

Specify the number of multiple BS searches per replicate to obtain better ML trees for each replicate. By
default only one ML search per BS replicate is conducted. Personal opinion: I believe that rather than ana-
lyzing 100 replicates exhaustively via -u one should better invest this time in just analyzing more replicates,
i.e., instead of executing raxmlHPC -b 12345 -# 100 -u 10 -s alg -m GTRGAMMA -n TEST, which will do
10 searches for every one of the 100 replicates, it would be better to do 1,000 replicates with raxmlHPC -b
12345 -# 1000 -s alg -m GTRGAMMA -n TEST. This option only works with standard bootstrapping via -b,
not the fast one via -x.

-v

Displays version information.

-w workingDirectory

Name of the working directory where RAxML shall write its output files to.

-x

Specify an integer number (random seed) and turn on rapid bootstrapping. This will invoke the novel rapid
bootstrapping algorithm.
Example: raxmlHPC -x 12345 -# 100 -m GTRCAT -s alg -n TEST.

-y

If you want to only compute a randomized parsimony starting tree with RAxML and not execute an ML
analysis of the tree specify -y. The program will exit after computation of the starting tree. This option can
be useful if you want to assess the impact of randomized MP and Neighbor Joining starting trees on your
search algorithm. They can also be used e.g. as starting trees for Derrick Zwickl’s GARLI program for ML
inferences, which needs comparatively “good” starting trees to work well above approximately 500 taxa.
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-z multipleTreesFile

Only effective in combination with the -f b,-f h,-f m,-f n options. This file should contain a number of
trees in NEWICK format. The file should contain one tree per line without blank lines between trees. For
example you can directly read in a RAxML bootstrap result file with -z.

-#|-N numberOfRuns

Specifies the number of alternative runs on distinct starting trees, e.g., if -# 10 or -N 10 is specified RAxML
will compute 10 distinct ML trees starting from 10 distinct randomized maximum parsimony starting trees.
In combination with the -b option, this will invoke a multiple bootstrap analysis. In combination with -x this
will invoke a rapid BS analysis and combined with -f a -x a rapid BS search and thereafter a thorough
ML search on the original alignment. We introduced -N as an alternative to -# since the special character #
seems to sometimes cause problems with certain batch job submission systems. In combination with -f j

this will generate numberOfRuns bootstrapped alignment files.
Example: raxmlHPC -s alg -n TEST -m GTRGAMMA -# 20.

4.4 Output Files

Depending on the search parameter settings RAxML will write a number of output files. The files, a run
named -n exampleRun will write, are listed below:

RAxML log.exampleRun: A file that prints out the time, likelihood value of the current tree and number
of the checkpoint file (if the use of checkpoints has been specified) after each iteration of the search
algorithm. In the last line it also contains the final likelihood value of the final tree topology after
thorough model optimization, but only if -m GTRMIX or -m GTRGAMMA have been used. This file is not
written if multiple bootstraps are executed, i.e. -# and -b have been specified. In case of a multiple
inference on the original alignment (-# option) the Log-Files are numbered accordingly.

RAxML result.exampleRun: Contains the final tree topology of the current run. This file is also written
after each iteration of the search algorithm, such that you can restart your run with -t in case your
computer crashed. This file is not written if multiple bootstraps are executed, i.e. -# and -b have
been specified.

RAxML info.exampleRun: contains information about the model and algorithm used and how RAxML was
called. The final GTRGAMMA likelihood(s) (only if -m GTRGAMMA or -m GTRMIX have been used) as well
as the alpha shape parameter(s) are printed to this file. In addition, if the rearrangement setting was
determined automatically (-i has not been used) the rearrangement setting found by the program will
be indicated.

RAxML parsimonyTree.exampleRun: contains the randomized parsimony starting tree if the program
has not been provided a starting tree by -t. However, this file will not be written if a multiple bootstrap
is executed using the -# and -b options.

RAxML randomTree.exampleRun: contains the completely random starting tree if the program was exe-
cuted with -d.

RAxML checkpoint.exampleRun.checkpointNumber: Printed if you specified by -j that checkpoints
shall be written. Checkpoints are numbered from 0 to n where n is the number of iterations of the
search algorithm. Moreover, the checkpoint files are additionally numbered if a multiple inference on
the original alignment has been specified using -#. Writing of checkpoint files is disabled when a
multiple bootstrap is executed.

RAxML bootstrap.exampleRun: If a multiple bootstrap is executed by -# and -b or -x all final boot-
strapped trees will be written to this one, single file.
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RAxML bipartitions.exampleRun: If you used the -f b option, this file will contain the input tree with
confidence values from 0 to 100 drawn on it. It is also printed when -f a -x have been specified, at
the end of the analysis the program will draw the BS support values on the best tree found during the
ML search.

RAxML reducedList.exampleRun: If you used -l or -L this file will contain clustering information in the
following format:

tax1:tax2,tax3,tax4

tax10:tax9,tax11

..

where the first entry in each line is the taxon-name of the respective representative sequence of a
cluster, while the remaining ones after : are the taxa that have been removed via clustering.

RAxML bipartitionFrequencies.exampleRun: Contains the pair-wise bipartition frequencies of all trees
contained in files passed via -t and -z when the -f m option has been used.

RAxML perSiteLLs.exampleRun: Contains the per–site log likelihood scores in Treepuzzle format for us-
age with CONSEL [20]. This file is only printed when -f g is specified.

RAxML bestTree.exampleRun: Contains the best-scoring ML tree of a thorough ML analysis in conjunc-
tion with a rapid BS analysis, i.e., when options -x 12345 -f a are used.

RAxML distances.exampleRun: Contains the pair-wise ML-based distances between all taxon-pairs in
the alignment. This file is only printed when the -f x option is used.

5 How to set up and run a typical Analysis

This is a HOW-TO, which describes how RAxML should best be used for a real-world biological analysis,
given an example alignment named ex_al. Section 5.1 covers the easy (fully automatic) fast way to run
it, using the novel rapid BS algorithm, while Section 5.2 describes the hard, more compute–intensive and
more thorough way.

5.1 The Easy & Fast Way

The easy and fast way to infer trees with RAxML and to analyze really large datasets (several genes or
more than 1,000 taxa) or to conduct a large number of BS replicates is to use the novel rapid BS algorithm
and combine it with an ML search. RAxML will then conduct a full ML analysis, i.e., a certain number of BS
replicates and a search for a best–scoring ML tree on the original alignment.

To just do a BS search you would type:

raxmlHPC -x 12345 -p 12345 -# 100 -m GTRGAMMA -s ex_al -n TEST

Note, that the rapid BS algorithm will override the choice of GTRGAMMA and always use the GTR+CAT
approximation for efficiency! Thus, whether you specify -m GTRGAMMA,-m GTRCAT, -m GTRGAMMAI the re-
sult will always be the same. Note that, here I added the -p option to pass a random number seed for MP
starting tree computations, such that the results of the analysis will always be the same. I would like to
encourage users to do so as well, because this will allow me to reconstruct potential bugs more easily.

Now, if you want to run a full analysis, i.e., BS and ML search type:

raxmlHPC -f a -x 12345 -p 12345 -# 100 -m GTRGAMMA -s ex_al -n TEST
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This will first conduct a BS search and once that is done a search for the best–scoring ML tree.
Such a program run will return the bootstrapped trees (RAxML_bootstrap.TEST), the best scoring ML tree
(RAxML_bestTree.TEST) and the BS support values drawn on the best-scoring tree (RAxML_bipartitions.TEST).
Here, the model choice via -m plays a role for the ML search. If you specify, e.g., -m GTRCAT the ML search
will still be conducted under GTRGAMMA. So, in general the only thing that matters, is whether you want to use
GTRGAMMA or GTRGAMMAI to include an estimate of the proportion of invariable sites.

Finally, note that, by increasing the number of BS replicates via -# you will also make the ML search
more thorough, since for ML optimization every 5th BS tree is used as a starting point to search for ML
trees. From what I have observed so far, this new ML search algorithm yielded better trees than what is
obtained via 20 standard ML searches on distinct starting trees for all datasets with ≤ 1,000 sequences.
For larger datasets it might be worthwhile to conduct an additional ML search as described in Section 5.2.3,
just to be sure.

WARNING note that the rapid BS search will currently ignore commands associated to user tree files
passed via -t,-z. However, the constraint and backbone tree options (-g and -r) do work with rapid BS now.

5.2 The Hard & Slow Way

Despite the observation that the default parameters and the rapid BS and ML algorithm described above
work well in most practical cases, a good thing to do is to adapt the program parameters to your alignment.
This refers to a “good” setting for the rate categories of -m GTRCAT and the initial rearrangement setting. If
you use mixed models you should add -q modelFileName to all of the following commands.

5.2.1 Getting the Initial Rearrangement Setting right

If you don’t specify an initial rearrangement setting with the -i option the program will automatically deter-
mine a good setting based upon the randomized MP starting tree. It will take the starting tree and apply
lazy subtree rearrangements with a rearrangement setting of 5, 10, 15, 20, 25. The minimum setting that
yields the best likelihood improvement on the starting trees will be used as initial rearrangement setting.
This procedure can have two disadvantages: Firstly, the initial setting might be very high (e.g. 20 or 25) and
the program will slow down considerably. Secondly, a rearrangement setting that yields a high improvement
of likelihood scores on the starting tree might let the program get stuck earlier in some local maximum (this
behavior could already be observed on a real dataset with about 1,900 taxa).

Therefore, you should run RAxML a couple of times (the more the better) with the automatic determi-
nation of the rearrangement setting and with a pre-defined value of 10 which proved to be sufficiently large
and efficient in many practical cases. In the example below we will do this based on 5 fixed starting trees.

So let’s first generate a couple of randomized MP starting trees. Note that in RAxML-VI-HPC 2.2.3 you
also always have to specify a substitution model , regardless of whether you only want to compute an
MP starting tree with the -y option.

raxmlHPC -y -s ex_al -m GTRCAT -n ST0

...

raxmlHPC -y -s ex_al -m GTRCAT -n ST4

Then, infer the ML trees for those starting trees using a fixed setting -i 10 ...

raxmlHPC -f d -i 10 -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST0 -n FI0

...

raxmlHPC -f d -i 10 -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST4 -n FI4

and then using the automatically determined setting on the same starting trees:

raxmlHPC -f d -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST0 -n AI0

...

raxmlHPC -f d -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST4 -n AI4
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Here, we use the GTRMIX model, i.e. inference under GTRCAT and evaluation of the final tree under
GTRGAMMA such that we can compare the final likelihoods for the fixed setting FI0-FI4 and the automatically
determined setting AI0-AI4.

The setting that yields the best likelihood scores should be used in the further analyses.

5.2.2 Getting the Number of Categories right

Another issue is to get the number of rate categories right. Due to the reduced memory footprint and
significantly reduced inference times the recommended model to use with RAxML on large dataset is GTRMIX
if you are doing runs to find the best-known ML tree on the original alignment and GTRCAT for bootstrapping.

Thus, you should experiment with a couple of -c settings and then look which gives you the best Γ

likelihood value.
Suppose that in the previous Section 5.2.1 you found that automatically determining the rearrangement

setting works best for your alignment.
You should then re-run the analyses with distinct -c settings by increments of e.g. 15 rate categories

e.g.:

raxmlHPC -f d -c 10 -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST0 -n C10_0

...

raxmlHPC -f d -c 10 -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST4 -n C10_4

You don’t need to run it with the default setting of -c 25 since you already have that data, such that you
can continue with ...

raxmlHPC -f d -c 40 -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST0 -n C40_0

...

raxmlHPC -f d -c 40 -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST4 -n C40_4

and so on and so forth.
Since the GTRCAT approximation is still a new concept little is known about the appropriate setting for

-c 25. However, empirically -c 25 worked best on 19 real-world alignments. So testing up to -c 55 should
usually be sufficient, except if you notice a tendency for final GTRGAMMA likelihood values to further improve
with increasing rate category number.

Thus, the assessment of the “good” -c setting should once again be based on the final GTRGAMMA likeli-
hood values.

If you don’t have the time or computational power to determine both “good” -c and -i settings you should
rather stick to determining -i since it has shown to have a greater impact on the final results.

Also note, that increasing the number of distinct rate categories has a negative impact on execution
times.

Finally, if the runs with the automatic determination of the rearrangement settings from Section 5.2.1
have yielded the best results you should then use exactly the same rearrangement settings for each series
of experiments to determine a good -c setting. The automatically determined rearrangement settings can
be retrieved from file RAxML_info.AI_0 ... RAxML_info.AI_4.

5.2.3 Finding the Best-Known Likelihood tree (BKL)

As already mentioned RAxML uses randomized MP starting trees in which it initiates an ML-based opti-
mization. Those trees are obtained by using a randomized stepwise addition sequence to insert one taxon
after the other into the tree. When all sequences have been inserted a couple of subtree rearrangements
(also called subtree pruning re-grafting) with a fixed rearrangement distance of 20 are executed to further
improve the MP score.

The concept to use randomized MP starting trees in contrast to the NJ (Neighbor Joining) starting trees
many other ML programs use is regarded as an advantage of RAxML. This allows the program to start ML
optimizations of the topology from a distinct starting point in the immense topological search space each
time. Therefore, RAxML is more likely to find good ML trees if executed several times.
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This also allows you to build a consensus tree out of the final tree topologies obtained from each indi-
vidual run on the original alignment. By this and by comparing the final likelihoods you can get a feeling on
how stable (prone to get caught in local maxima) the search algorithm is on the original alignment.

Thus, if you have sufficient computing resources available, in addition to bootstrapping, you should
do multiple inferences (I executed 200 inferences in some recent real-world analyses with Biologists) with
RAxML on the original alignment. On smaller datasets it will also be worthwhile to use the -d option for a
couple of runs to see how the program behaves on completely random starting trees.

This is where the -# option as well as the parallel MPI version raxmlHPC-MPI come into play.
So, to execute a multiple inference on the original alignment on a single processor just specify:

raxmlHPC -f d -m GTRMIX -s ex_al -# 10 -n MultipleOriginal

and RAxML will do the rest for you. Note that specifying -m GTRCAT in combination with -# is not a good
idea, because you will probably want to compare the trees inferred under GTRCAT based on their likelihood
values and will have to compute the likelihood of the final trees under GTRGAMMA anyway. Thus you should
better use -m GTRMIX for those analyses.

If you have a PC cluster available you would specify,

raxmlHPC-MPI -f d -m GTRMIX -s ex_al -# 100 -n MultipleOriginal

preceded by the respective MPI run-time commands, e.g. mpiexec or mpirun depending on your local
installation (please check with your local computer scientist).

It is important to note that you should specify the execution of one more process than CPUs available
(e.g. you have 8 CPUs → start 9 MPI processes), since one of those is just the master process which
collects data and issues jobs to the worker processes and does not produce significant computational load.

5.2.4 Bootstrapping with RAxML

To carry out a multiple non-parametric bootstrap with the sequential version of RAxML just type:

raxmlHPC -f d -m GTRCAT -s ex_al -# 100 -b 12345 -n MultipleBootstrap

You have to specify a random number seed after -b for the random number generator. This will allow
you to generate reproducible results. Note that we can use GTRCAT here, if we do not want to compare final
trees based on ML scores or need bootstrapped trees with branch lengths.

To do a parallel bootstrap type:

raxmlHPC-MPI -f d -m GTRCAT -s ex_al -# 100 -b 12345 -n MultipleBootstrap

once again preceded by the appropriate MPI execution command. Note that despite the fact that you
specified a random number seed the results of a parallel bootstrap are not reproducible.

5.2.5 Obtaining Confidence Values

Suppose that you have executed 200 inferences on the original alignment and 1,000 bootstrap runs. You
can now use the RAxML -f b option to draw the information from the 1,000 bootstrapped topologies onto
some tree and obtain a topology with support values. From my point of view the most reasonable thing to do
is to draw them on the best-scoring ML tree from those 200 runs. Suppose, that the best-scoring tree was
found in run number 99 and the respective tree-file is called RAxML_result.MultipleOriginal.RUN.99.

If you have executed more than one bootstrap runs with the sequential version of RAxML on distinct
computers, i.e. 10 runs with 100 bootstraps on 10 machines you will first have to concatenate the boot-
strap files. If your bootstrap result files are called e.g. RAxML_bootstrap.MultipleBootstrap.0, ...,

RAxML_bootstrap.MultipleBootstrap.9 you can easily concatenate them by using the LINUX/UNIX cat

command, e.g.

cat RAxML_bootstrap.MultipleBootstrap.* > RAxML_bootstrap.All

In order to get a tree with bootstrap values on it just execute RAxML as indicated below:
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raxmlHPC -f b -m GTRCAT -s ex_al -z RAxML_bootstrap.All

-t RAxML_result.MultipleOriginal.RUN.99 -n BS_TREE

The new output tree format now shows the support values as inner node labels and also displays branch
lengths, it can look e.g. like this:

((((Human:0.555,((Frog:0.207,(Carp:0.129,Loach:0.192)

100:0.159)70:0.001,Chicken:0.561)100:0.259)65:0.091,

(Whale:0.108,(Cow:0.116,Seal:0.186)55:0.030)65:0.046)

95:0.144,Rat:0.068):0.045,Mouse:0.045);

6 Frequently Asked Questions

Q: When performing a bootstrap search using a partitioned model, does RAxML perform a conserved-
bootstrap resampling, i.e., does it resample within genes so that partitions are sustained?

That is the case. When performing Bootstraps on partitioned data sets, bootstrapped alignments will
be sampled from within partitions, i.e., bootstrapped partitions are sustained and contain exactly the same
number of alignment columns as the original partition.

Q: Can I use NEXUS-style input files for analyses with RAxML?

Not directly, but my colleague Frank Kauff (fkauff@rhrk.uni-kl.de) at the University of Kaiserslautern
has written a cool biopython wrapper called PYRAXML2. This is a script that reads nexus data files and
prepares the necessary input files and command-line options for RAxML. You can download the Beta-
version of PYRAXML2 at http://www.lutzonilab.net/downloads/.

Q: Why don’t you like the proportion of Invariable (P-Invar) Sites estimate, despite the fact that you
implemented it?

I only implemented P-Invar in RAxML to make some users happy, but I still strongly disagree with
its usage.

PERSONAL OPINION: It is unquestionable that one needs to incorporate rate heterogeneity in order
to obtain “publishable” results. Put aside the “publish-or-perish” argument, there is also strong biological
evidence for rate heterogeneity among sites. The rationale for being sceptical about P-Invar in RAxML
is that all three alternatives, GTRGAMMA, GTRCAT, and P-Invar represent distinct approaches to incorporate
rate heterogeneity. Thus, in principle they account for the same phenomenon by different mathematical
means. Also some unpublished concerns have been raised that the usage of P-Invar in combination with
Γ can lead to a “ping-pong” effect since a change of P-Invar leads to a change in Γ and vice versa. This
essentially means that those two parameters, i.e., α and P-Invar can not be optimized independently from
each other, and might cause significant trouble and problems during the model parameter (everything except
tree topology) optimization process. In fact, I already observed this when I was implementing P-Invar in
RAxML on a very small AA dataset.

Although this has never been properly documented, several well-known researchers in phylogenetics
share this opinion (Arndt v. Haeseler, Ziheng Yang; quote from an recent email in 2008 regarding this part
of the RAxML manual: I entirely agree with your criticism of the Pinv+Gamma model, even though as you
said, it is very commonly used., Korbinian Strimmer, personal communications). The following paper [35]
touches this problem of dependency between α and P-Invar.

Ziheng Yang kindly provided some additional references that refer to this problem [36, 37, 38, 39, 24].
He also addresses the issue in his recently published book on Computational Molecular Evolution (Ox-

ford University Press, 2006); quote from pages 113–114: The model is known as I+G and has been widely
used. This model is somewhat pathological as the gamma distribution with alpha ¡ 1 already allows for sites
with very low rates; as a result, adding a proportion of invariable sites creates a strong correlation between
p0 and alpha, making it impossible to estimate both parameters reliably [38, 39, 24]. Another drawback
of the model is that the estimate of p0 is very sensitive to the number and divergences of the sequences
included in the data. The proportion p0 is never larger than the observed proportion of constant sites; with
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the addition of more and divergent sequences, the proportion of constant sites drops, and the estimate of
p0 tends to go down as well.

In any case, I have so far not encountered any difficulties with reviews for the few real phylogenetic
analyses [40, 41] I have published with collegues from Biology, when we used GTR+Γ instead of the more
widely spread GTR+Γ+I.

Q: Why does RAxML only implement GTR-based models of nucleotide substitution?

For each distinct model of nucleotide substitution RAxML uses a separate, highly optimized set of likeli-
hood functions. The idea behind this is that GTR is the most common and general model for real-world DNA
analysis. Thus, it is better to efficiently implement and optimize this model instead of offering a plethora of
distinct models which are only special cases of GTR but are programmed in a generic and thus inefficient
way.

PERSONAL OPINION: My personal view is that using a simpler model than GTR only makes sense with
respect to the computational cost, i.e. it is less expensive to compute. Programs such as Modeltest [42]
propose the usage of a simpler model for a specific alignment if the likelihood of a fixed topology under
that simpler model is not significantly worse than that obtained by GTR based on a likelihood ratio test. My
experience is that GTR always yields a slightly better likelihood than alternative simpler models. In addition,
since RAxML has been designed for the inference of large datasets the danger of over-parameterizing
such an analysis is comparatively low. Provided these arguments the design decision was taken to rather
implement the most general model efficiently than to provide many inefficient generic implementations
of models that are just special cases of GTR. Finally, the design philosophy of RAxML is based upon
the observation that a more thorough topological search has a greater impact on final tree quality than
modeling details. Thus, the efficient implementation of a rapid search mechanisms is considered to be
more important than model details. Note that, Derrick Zwickl has independently adapted the same strategy
in his very good GARLI code (http://www.zo.utexas.edu/faculty/antisense/Garli.html), based on
similar considerations (personal communication).

Q: How does RAxML perform compared to other programs?

RAxML has been compared to other phylogeny programs mainly based on real-world biological datasets
and best-known likelihood values. Those analyses can be found in [4, 43, 44, 45]. On almost all real
datasets RAxML outperforms other current programs with respect to inference times as well as final likeli-
hood values. An exception is Derrick Zwickl’s GARLI code which represents a “good” alternative to RAxML
for trees containing less than approximately 1,000–1,500 taxa. The main advantages of RAxML with re-
spect to all other programs are the highly optimized and efficient likelihood functions and the very low mem-
ory consumption. In particular the implementation of the GTRCAT feature allows RAxML to compute huge
trees under a realistic approximation of nucleotide substitution which is currently impossible with competing
programs due to excessive memory requirements. An initial analysis of the large multi-gene mammalian
dataset under GTRCAT showed promising results.

Q: Why has the performance of RAxML mainly been assessed using real-world data?

PERSONAL OPINION: Despite the unquestionable need for simulated data and trees to verify and
test the performance of current ML algorithms the current methods available for generation of simulated
alignments are not very realistic. For example, only few methods exist that incorporate the generation of
gaps in simulated alignments. Since the model according to which the sequences are generated on the
true tree is pre-defined we are actually assuming that ML exactly models the true evolutionary process,
while in reality we simply don’t know how sequences evolved. The above simplifications lead to “perfect”
alignment data without gaps, that evolved exactly according to a pre-defined model and thus exhibits a very
strong phylogenetic signal in contrast to real data. In addition, the given true tree, must not necessarily be
the Maximum Likelihood tree. This difference manifests itself in substantially different behaviors of search
algorithms on real and simulated data. Typically, search algorithms execute significantly less (factor 5–
10) topological moves on simulated data until convergence as opposed to real data, i.e. the number of
successful Nearest Neighbor Interchanges (NNIs) or subtree rearrangements is lower. Moreover, in several
cases the likelihood of trees found by RAxML on simulated data was better than that of the true tree. Another
important observation is that program performance can be inverted by simulated data. Thus, a program that
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yields “good” Robinson–Foulds distances [46, 47] on simulated data can in fact perform much worse on real
data than a program that does not perform well on simulated data. If one is willing to really accept ML as
inference criterion on real data one must also be willing to assume that the tree with the best likelihood
score is the tree that is closest to the true tree.

My personal conclusion is that there is a strong need to improve simulated data generation and method-
ology. In addition, the perhaps best way to assess the validity of our tree inference methods consists in
an empirical evaluation of new results and insights obtained by real phylogenetic analysis. This should be
based on the prior knowledge of Biologists about the data and the medical and scientific benefits attained
by the computation of phylogenies.

Q: Why am I getting weird error messages from the MPI version?

You probably forgot to specify the -# or -N option in the command-line which must be used for the MPI
version to work properly.

Q: When using mixed models, can I link the model parameters of distinct partitions to be estimated
jointly, in a similar as way MrBayes does it?

Currently not, but the implementation of such an option is planned.

7 Things in Preparation

A couple of things are in preparation (to be hopefully released within the next 6 months) which will further
expand the capabilities of RAxML. Please be patient with feature requests, since I do not have anybody to
help me with program development.

• Built-in bootstopping/convergence criterion

• Linking parameter estimation across mixed models

• ML-based estimate of base frequencies (I have been promising that for a long time now, I know)

• ML-model for morphological/binary data

• ML-based rapid sequence addition option

• More efficient ML function implementation for very gappy multi-gene alignments.

For any further requests or suggestions please send an email to stamatakis@bio.ifi.lmu.de or con-
tact me via skype internet telephony, login: stamatak.
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Marty J. Wolf, Aggelos Bilas, Alkiviadis Simeonidis, Martin Reczko, Gangolf Jobb, Frank Kauff, James
Munro, Peter Cordes, Tandy Warnow, Bernard Moret, Paul Hoover, Jacques Rougemont, Joe Felsenstein,
Daniel Lundin.

22



References

[1] Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of
Molecular Evolution 17 (1981) 368–376

[2] Felsenstein, J.: Phylip (phylogeny inference package) version 3.6 (2004) Distributed by the author.
Department of Genome Sciences, University of Washington, Seattle.

[3] Stamatakis, A., Blagojevic, F., Nikolopoulos, D., Antonopoulos, C.: Exploring New Search Algorithms
and Hardware for Phylogenetics: RAxML Meets the IBM Cell. The Journal of VLSI Signal Processing
48 (2007) 271–286

[4] Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of
taxa and mixed models. Bioinformatics 22 (2006) btl446

[5] Felsenstein, J.: Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution 39
(1985) 783–791

[6] Zwickl, D.: Genetic Algorithm Approaches for the Phylogenetic Analysis of Large Biological Sequence
Datasets under the Maximum Likelihood Criterion. PhD thesis, University of Texas at Austin (2006)

[7] Guindon, S., Gascuel, O.: A simple, fast, and accurate algorithm to estimate large phylogenies by
maximum likelihood. Syst. Biol. 52 (2003) 696–704

[8] Ott, M., Zola, J., Aluru, S., Stamatakis, A.: Large-scale Maximum Likelihood-based Phylogenetic
Analysis on the IBM BlueGene/L. In: ACM/IEEE Supercomputing conference 2007. (2007)

[9] Morrison, D.A.: Increasing the Efficiency of Searches for the Maximum Likelihood Tree in a Phyloge-
netic Analysis of up to 150 Nucleotide Sequences. Systematic Biology 56 (2007) 988–1010

[10] Stamatakis, A., Auch, A., Meier-Kolthoff, J., Goeker, M.: AxPcoords & parallel AxParafit: statistical
co-phylogenetic analyses on thousands of taxa. BMC Bioinformatics 8 (2007) 405

[11] Stamatakis, A., Ott, M., Ludwig, T.: Raxml-omp: An efficient program for phylogenetic inference on
smps. In: Proc. of PaCT05. (2005) 288–302

[12] Stamatakis, A.: Phylogenetic models of rate heterogeneity: A high performance computing perspec-
tive. In: Proc. of IPDPS2006, Rhodos, Greece (2006)

[13] Minh, B., Vinh, L., Haeseler, A., Schmidt, H.: piqpnni - parallel reconstruction of large maximum
likelihood phylogenies. Bioinformatics (2005)

[14] Ripplinger, J., Sullivan, J.: Does Choice in Model Selection Affect Maximum Likelihood Analysis?
Systematic Biology 57 (2008) 76–85

[15] Tavar, S.: Some Probabilistic and Statistical Problems in the Analysis of DNA Sequences. Some
Mathematical Questions in Biology: DNA Sequence Analysis 17 (1986)

[16] Yang, Z.: Maximum likelihood phylogenetic estimation from dna sequences with variable rates over
sites. J. Mol. Evol. 39 (1994) 306–314

[17] Yang, Z.: Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol. Evol. 11
(1996) 367–372

[18] Dunn, C.W., Hejnol, A., Matus, D.Q., Pang, K., Browne, W.E., Smith, S.A., Seaver, E., Rouse, G.W.,
Obst, M., Edgecombe, G.D., Sorensen, M.V., Haddock, S.H.D., Schmidt-Rhaesa, A., Okusu, A., Kris-
tensen, R.M., Wheeler, W.C., Martindale, M.Q., Giribet, G.: Broad phylogenomic sampling improves
resolution of the animal tree of life. Nature (2008) advance on-line publication.

[19] Schmidt, H., Strimmer, K., Vingron, M., Haeseler, A.: Tree-puzzle: maximum likelihood phylogenetic
analysis using quartets and parallel computing. Bioinformatics 18 (2002) 502–504

23



[20] Shimodaira, H., Hasegawa, M.: CONSEL: for assessing the confidence of phylogenetic tree selection
(2001)

[21] SHIMODAIRA, H., HASEGAWA, M.: MULTIPLE COMPARISONS OF LOG-LIKELIHOODS WITH AP-
PLICATIONS TO PHYLOGENETIC INFERENC. Molecular biology and evolution 16 (1999) 1114–1116

[22] Strimmer, K., Rambaut, A.: Inferring confidence sets of possibly misspecified gene trees Proc. R. Soc.
Lond. B 269 (2002) 137–142

[23] Heyer, L., Kruglyak, S., Yooseph, S.: Exploring Expression Data: Identification and Analysis of Coex-
pressed Genes. Genome Research 9 (1999) 1106–1115

[24] Yang, Z.: Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates
differ over sites (1993)

[25] Dayhoff, M., Schwartz, R., Orcutt, B.: A model of evolutionary change in proteins. Atlas of Protein
Sequence and Structure 5 (1978) 345–352

[26] Kosiol, C., Goldman, N.: Different Versions of the Dayhoff Rate Matrix. Molecular Biology and Evolution
22 (2005) 193–199

[27] Jones, D., Taylort, W., Thornton, J.: A new approach to protein fold recognition. Nature 358 (1992)
86–89

[28] Adachi, J.: Model of Amino Acid Substitution in Proteins Encoded by Mitochondrial DNA. Journal of
Molecular Evolution 42 (1996) 459–468

[29] Whelan, S., Goldman, N.: A General Empirical Model of Protein Evolution Derived from Multiple
Protein Families Using a Maximum-Likelihood Approach. Molecular Biology and Evolution 18 (2001)
691–699

[30] Dimmic, M., Rest, J., Mindell, D., Goldstein, R.: rtREV: An Amino Acid Substitution Matrix for Inference
of Retrovirus and Reverse Transcriptase Phylogeny. Journal of Molecular Evolution 55 (2002) 65–73

[31] Adachi, J., Waddell, P., Martin, W., Hasegawa, M.: Plastid Genome Phylogeny and a Model of Amino
Acid Substitution for Proteins Encoded by Chloroplast DNA. Journal of Molecular Evolution 50 (2000)
348–358

[32] Mueller, T., Vingron, M.: Modeling Amino Acid Replacement. Journal of Computational Biology 7
(2000) 761–776

[33] Henikoff, S., Henikoff, J.: Amino Acid Substitution Matrices from Protein Blocks. Proceedings of the
National Academy of Sciences of the United States of America 89 (1992) 10915–10919

[34] Yang, Z.: Synonymous and Nonsynonymous Rate Variation in Nuclear Genes of Mammals. Journal
of Molecular Evolution 46 (1998) 409–418

[35] Gu, X.: Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites.
Molecular Biology and Evolution 12 (1995) 546–557

[36] Ren, F., Tanaka, H., Yang, Z.: An Empirical Examination of the Utility of Codon-Substitution Models in
Phylogeny Reconstruction. Systematic Biology 54 (2005) 808–818

[37] Minin, V., Abdo, Z., Joyce, P., Sullivan, J.: Performance-Based Selection of Likelihood Models for
Phylogeny Estimation. Systematic Biology 52 (2003) 674–683

[38] Mayrose, I., Friedman, N., Pupko, T.: A Gamma mixture model better accounts for among site rate
heterogeneity. Bioinformatics 21 (2005)

[39] Sullivan, J., Swofford, D., Naylor, G.: The Effect of Taxon Sampling on Estimating Rate Heterogeneity
Parameters of Maximum-Likelihood Models. Molecular Biology and Evolution 16 (1999) 1347–1356

24



[40] Grimm, G.W., Renner, S.S., Stamatakis, A., Hemleben, V.: A nuclear ribosomal DNA phylogeny of acer
inferred with maximum likelihood, splits graphs, and motif analyses of 606 sequences. Evolutionary
Bioinformatics Online 2 (2006) 279–294

[41] Gottschling, M., Stamatakis, A., Nindl, I., Stockfleth, E., Alonso, A., Gissmann, L., Bravo, I.G.: Multi-
ple evolutionary mechanisms drive papillomavirus diversification. Molecular Biology and Evolution 24
(2007) 1242–1258

[42] Posada, D., Crandall, K.: Modeltest: testing the model of dna substitution. Bioinformatics 14 (1998)
817–818

[43] Stamatakis, A.: An efficient program for phylogenetic inference using simulated annealing. In: Proc.
of IPDPS2005, Denver, Colorado, USA (2005)

[44] Stamatakis, A., Ludwig, T., Meier, H.: New fast and accurate heuristics for inference of large phyloge-
netic trees. In: Proc. of IPDPS2004. (2004)

[45] Stamatakis, A., Ludwig, T., Meier, H.: Raxml-iii: A fast program for maximum likelihood-based inference
of large phylogenetic trees. Bioinformatics 21 (2005) 456–463

[46] Robinson, D.F., Foulds, L.R.: Comparison of weighted labelled trees. Lecture Notes in Mathematics
748 (1979) 119–126

[47] Robinson, D.F., Foulds, L.R.: Comparison of Phylogenetic Trees. Mathematical Biosciences 53 (1981)
131–147

25


