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1 Quick Start

Installation of ExaBayes requires basic proficiency with using a terminal (for help, con-
sider this tutorial).

For impatient users who want to give ExaBayes a quick try, we recommend:

1. Download and unpack the software package. You find executables (sequential:
yggdrasil, parallel: exabayes) in the ./bin folder. The -h flag provides you
with an overview of options. If you downloaded the source code please follow the
instructions in Sect. 3.2.

2. If you have convinced yourself, that the executables are in place, consider
running the examples in the ./examples directory (call the ./call.sh or
./call-parallel.sh scripts there). If you want to run your own dataset, convert
your alignment file into phylip-format (e.g., using seaview).

3. If you have prepared your dataset, run the sequential version of ExaBayes, where
alignmentFile.phy is the alignment file (use -m PROT for protein data) and
$RANDOM could be any random number seed.

$ ./bin/bin/yggdrasil -f alignmentFile.phy -m DNA -s $RANDOM

4. After some time, ExaBayes should finish or you may abort at any time. You can
now examine the two output files ExaBayes_topology* and ExaBayes_parameters*
using the post-processing tools consense, postProcParam, credibleSet and
extractBips (see Sect. 7). Call the respective programs with -h for an overview
of functions.

2 Scope of ExaBayes: What is it? What is it not?

ExaBayes is a tool for Bayesian phylogenetic analyses. It implements a Markov chain
Monte Carlo sampling approach that allows to determine the posterior probability of a
tree (resp., topology) and various evolutionary model parameters, for instance, branch
lengths or substitution rates. Similar approaches are implemented in BEAST [1] or
MrBayes [4]. ExaBayes has heavily drawn inspiration specifically from the latter one.

ExaBayes comes with the most commonly used evolutionary models, such as the
generalized time reversible model (GTR) of character substitution, the discretized Γ
model of among site rate heterogeneity and estimates trees with unconstrained branch
lengths. For clocked tree models or less parameter-rich substitution models, we refer
you to the established tools.

The distinguishing feature of ExaBayes is its capability to handle enormous datasets
efficiently. ExaBayes provides an implementation of data parallelism using the Message
Passing Interface (MPI). This means, that if you conduct your analysis on a computing
cluster composed of several machines (a.k.a. nodes), the memory needed to evaluate the
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likelihood of trees and parameters given a large alignment can be spread out across mul-
tiple computing nodes. In conclusion, the size of the concatenated alignment ExaBayes
can handle is only limited by the combined main memory of your entire computing
cluster.

Aside from that ExaBayes also implements

• chain-level and run-level parallelism,

• techniques to trade runtime for reduced memory footprint,

• a subtree equality vector approach that reduces memory without loss of runtime,

• a native AVX implementation for evaluating likelihood and parsimony scores (i.e.,
ExaBayes makes full use of your cutting-edge CPU),

• techniques to efficiently handle an arbitrary number of partitions.

We use the highly efficient parsimony and likelihood implementation of RAxML [6].
Many of the techniques described above are adapted from or inspired by our experiences
with large-scale maximum likelihood inferences using RAxML-Light/ExaML [7, 5].

The ExaBayes package contains all tools necessary for post-processing your sampled
chains. For visualization of parameter distributions, we recommend Tracer and FigTree
(for which ExaBayes parameter files are compatible).

3 Installation

For ExaBayes, we provide pre-compiled binaries that run on a wide range of systems
(limited to Linux and MacOS though, we will not be able to support Windows in the
foreseeable future). For optimal efficiency or if you want to use the parallel version,
it is highly recommendable to compile ExaBayes from source. This should be straight-
forward on a computer center, requires a bit of work on a Linux system and unfortunately
is not entirely trivial if you have a MacOS system and no experience with the command
line.

3.1 Executing downloaded executables

After you have downloaded the appropriate package, you find all executables in the
./bin folder. Just execute these only using the -h flag and you will be given a help
page. If the executables produce error messages (indicating that some library was not
found), you either downloaded the wrong package or you have to compile from source.

3.2 Compiling ExaBayes from source

Download and extract the source archive (sources are also included in all binary distri-
butions).
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3.2.1 Prerequisites for Linux systems

ExaBayes requires a relatively recent c/c++ compiler that supports c++11 features. Ex-
aBayes is confirmed to work with (only one required):

1. GCC, version 4.6 or greater

2. Clang, version 3.2 or greater

For running ExaBayes in parallel using more than one computing node, you need a
working MPI installation. If you want to make most of your local multi-core machine
(e.g., laptop), simply install OpenMPI or Mpich2. On Debian/Ubuntu, this should be
as simple as (choose one):

$ sudo apt-get install mpich2 libmpich2-dev
$ sudo apt-get install openmpi-bin libopenmpi-dev

For checking, if MPI already is installed on your machine, try to enter mpirun or
mpiexec in a terminal. If it is not installed, you will receive a message "command not
found".

3.2.2 Prerequisites for Mac OS X

For installation on an Apple system, you ideally should have set up an environment that
allows you to compile (MPI-)applications in the terminal.

First, you need to download and install Xcode (also available in the AppStore) and
MacPorts. You only need MacPorts, if you want to build the parallel version. Open
a terminal and use MacPorts to install an MPI implementation (either openmpi or
mpich2):

$ sudo port install openmpi-default
$ sudo port install mpich-default

After the installation, a message will suggest that you set the MPI installation as
default. You now have MPI compiler wrappers available (mpicc-mpich-mp, mpicxx-
mpich-mp or mpicc-mpich-mp, mpicxx-mpich-mp or mpicc, mpicxx).
For installing MPI, also consider HomeBrew which is an alternative to MacPorts that

does not require sudo.

3.2.3 Configuring and Compiling

ExaBayes uses the typical autotools setup. Typically, the MPI environment (if available)
or best vectorization scheme (SSE or AVX) is determined automatically. The basic
command for building exabayes (with MPI support) is

./configure --enable-mpi && make

Consider the following options:
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• important: use the –bindir option with the absolute path to a directory in conjunc-
tion with "make install" to dump all executables into a folder /full/path/to/this/dir/bin

./configure --bindir=/full/path/to/this/dir && make install

• omit "–enable-mpi" to only build the multi-threaded version (e.g., if you have no
MPI support available)

• for the build on Mac systems, it may be necessary to add CXXFLAGS="-
stdlib=libc++" at the configure step:

./configure CXXFLAGS="-stdlib=libc++" && make

• use the ./configure environment variables (see ./configure –help) to specify non-
default compilers, for instance

./configure --enable-mpi CC=clang-3.3 CXX=clang++-3.3 MPICXX=mpicxx.openmpi

will configure exabayes to be build with clang-3.3 and OpenMPI, although default
compilers of your system are – for instance – gcc and MPICH.

Once everything has compiled, check, if all binaries are there as expected:

$ ls bin
consense credibleSet exabayes extractBips parser postProcParam sdsf yggdrasil

Please notice:

1. Compilation takes a while: if you have multiple cores available, then use "make -j
x", where x is the number of cores you want to use for compilation.

2. If for some reason you want to re-compile the code, do not forget to run "make
clean" first.

3. If you compile on a cluster where your login-node has an AVX-capable CPU, then
you will get an AVX-optimized exabayes. If you now try to execute this version of
exabayes on a non-AVX capable CPU, the program mostly will just crash with the
message "Illegal instruction.". In these cases, compile exabayes on one of the nodes
you intend to execute ExaBayes later or use the configure flags "–disable-avx", etc.

4 Tutorial and Workflow

This is a basic tutorial for how to conduct Bayesian tree inference with ExaBayes (specif-
ically useful, if you do not have much experience with Bayesian tree inference).

Assume you want to analyze an alignment file that contains several partitions. Create
a folder and copy aln.phy and aln.part from the folder examples/dna-partitioned
into that folder. Copy ./examples/configFile-all-options.nex as well and rename
it to config.nex. We will assume that all executables are in this working folder (other-
wise, modify the path to the executable accordingly).
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4.1 Basic Workflow

Let’s at first simply run a single chain for some time:

$ ./yggdrasil -f aln.phy -m DNA -n myRun -s $RANDOM

ExaBayes will print output that is separated into various sections:

1. after the header, you find a section (divided by ’=’) that re-iterates the alignment
(number of unique patterns and type of partitions).

2. In the next section, ExaBayes lists the parameters to be integrated. For instance,
the tree topology is considered a parameter. It also displays the (default) prior for
parameters and initial values.

3. The 3rd section contains the proposals that are instantiated for integrating over
the aforementioned parameters.

During the MCMC simulation, ExaBayes prints the log-likelihoods (lnl) of the (sole)
chain. You’ll find that after some time the lnl will reach a plateau. Stop the run after
something like 50,000 generations (using Control-c).

Now examine the output files created by ExaBayes (we neglect the binary alignment
file and the checkpoint files):

• ExaBayes_info.myRun
Contains the same information also printed to the screen.

• ExaBayes_topologies.myRun.0
Contains all sampled topologies in nexus format.

• ExaBayes_parameters.myRun.0
Contains values sampled for all non-topological, non-branch length values.

• ExaBayes_diagnostics.myRun
Contains chain diagnostics (e.g., acceptance ratios for all proposals or topological
convergence in form of asdsf).

Now use the post-processing tools to examine the result. First, we create a consensus
tree:

$ ./consense -f ExaBayes_topologies.myRun.0 -n myCons

Now, open a tree viewer of your choice (e.g., FigTree, Archaeopteryx or Dendroscope)
and have a look at the consensus tree. If you ran just 50,000 generations, you will
probably find the confidence in most branches is pretty low.

Let’s inspect the 50% credible set of trees:

$ ./credibleSet -f ExaBayes_topologies.myRun.0 -n cred
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The output file ExaBayes_credibleSet.tmp contains all sampled trees ordered by the
frequency of their occurrence. You probably will find that no tree occurred more than
once.

Finally, let’s check, how well the parameters are sampled:

$ ./postProcParam -f ExaBayes_parameters.myRun.0 -n params

Alternatively, you could also open the parameter file with Tracer and visualize the dis-
tributions. If you do not have Tracer installed, have a look at ExaBayes_parameterStatistics.params
(spreadsheet tools like Excel are helpful). You’ll find summary statistics for each param-
eter. Specifically, check out the effective sampling size (ESS) value for each parameter.
Since samples in a chain are correlated, they are less informative, than if you had drawn
the values independently from the original distribution. The ESS of samples indicates
the number of samples your samples corresponds to, if they were drawn independently.

You will find that most ESS values are in the range between 30 and 80. This is not bad
for the low number of generations, but to assure that each parameter has been sampled
adequately, values should be > 100 or even better > 200. High ESS values indicate that
your chain has explored this parameter sufficiently.

4.2 Partitioned Alignment

Now remove the files from the initial run (otherwise ExaBayes will complain). We will
now conduct a proper analysis using several chains on a partitioned alignment.

You have to modify config.nex (remove the square brackets to uncomment). Un-
comment numGens and set it to 100000 (or 1e5). Uncomment numRuns and set it to 4.
This means that ExaBayes will conduct 4 independent analysis (starting in 4 different
random trees). If all runs yield the same split frequencies (i.e., the same confidence in a
split), we can be relatively sure that we have sampled the topology parameter sufficiently
(while it is still possible that simply all 4 chains got stuck in the same local optimum).

Check out the partitions file (aln.part): it contains 4 partitions. By default, Ex-
aBayes assumes that partitions have distinct branch lengths. Let’s link all partitions
into a single branch length parameter. To do so, add "brlens = (0-3)" in the params
section.

Use this command line to start the analysis:

$ ./yggdrasil -f aln.phy -q aln.part -n myRun -s $RANDOM -c config.nex

By default, ExaBayes will compute the average standard deviation of split frequencies
(asdsf) every 5,000 generations and stops the analysis once it the asdsf is better than
5% (and once we have at least 100,000 generations for each chain).

The analysis may take a while. If you have a cluster (with for instance 16 cores) at
your disposal, consider running the parallel version:

$ mpirun -np 16 ./exabayes -f aln.phy -q aln.part -n myRun -s $RANDOM -c config.nex -R 4

8



With -R 4, ExaBayes runs all 4 chains in parallel. In an additional section, ExaBayes
will inform you which chains and how many unique site patterns are assigned to each
process.

You will notice after 100,000 generations, that the 4 chains converge rather slowly.
Thus, enable Metropolis-Coupling to speed up the convergence. Set numCoupledChains
to 2 and (for purely computational reasons in this example), reduce the numRuns to 2.
Also, set parsimonyStart to true, such that your chains start from a parsimony tree
instead of a random tree. Using parsimony trees as initial topologies saves you some
time, however theoretically it also increases the probability that all your independent
chains become stuck in the same local optimum and you obtain incorrect estimates for
posterior probabilities.

If you have many cores, to run the two independent runs as well as the coupled chains
in parallel:

$ mpirun -np 16 ./exabayes -f aln.phy -q aln.part -n myRun -s $RANDOM -c config.nex -R 2 -C 2

After ≈ 150,000 generations, the ASDSF should have fallen below 5%, which is ac-
ceptable. A look at the consensus tree reveals that this dataset in fact contains several
low confidence branches. While in the first run the reason for low confidence branches
was due to the low number of generations, we can be more certain now that that low
confidence branches are a result of the phylogenetic signal in the alignment. Since you
ran 2 independent analyses, you obtain 2 sets of output files (parameter and topologies).
You can feed both files into the consensus tree (for both files the initial 25% of samples
will be discarded).

$ ./consense -f ExaBayes_topologies.myRun.* -n myCons

Analyze both parameter files using

$ ./postProcParam -f ExaBayes_parameters.myRun.* -n params

Since we carried out two partitioned analyses, we have a larger number of parameters
(where e.g., r{2}(C<->T) is the substitution probability of C to T in the third partition).
We find that nearly all parameters have an ESS > 100. The final column now contains
the potential scale reduction factor (PSRF). It indicates, whether within-chain variance
(of a parameter) is similar to between-chain variance. For this convergence statistic,
values should be close to 1, but lower than 1.2 or 1.1 (probably the case after 150,000
generations).

So far, we have neglected the branch length parameter. You may already have noticed,
that the consensus tree has been annotated with branch lengths. To extract ESS and
PSRF values for each branch length, run:

$ ./extractBips -f ExaBayes_topologies.myRun.* -n bls

Thus, you obtain the following files:
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• ExaBayes_bipartitions.tmp
contains an identifier for each branch/split (that is explicitly printed)

• ExaBayes_fileNames.tmp
lists the file names used as input (and assigned an id to them)

• ExaBayes_bipartitionBranchLengths.tmp
contains all raw branch lengths sampled and lists split id and file ids

• ExaBayes_bipartitionStatistics.tmp
contains statistics for each branch (specifically the ESS and PSRF)

Notice that for low confidence branches you are likely to encounter poor ESS/PSRF
values. This means that you substantially have to increase the number of generations in
order to obtain accurate estimates of branch lengths distributions.

5 Command Line Options

Command line options specify, how ExaBayes will carry out the analyses. In contrast,
the a config file specifies which kind of analyses will be executed.

5.1 Mandatory Arguments

• -f alignmentFile

provides an alignment file. If this file is the binary output produced by parser
(see Section 7.1), then no further arguments are required. If you provide a plain
(un-processed) Phylip file, then either -m (single partition model) or -q (model
file) are mandatory.

• -m DNA | PROT

specifies the data type used, when a Phylip-formatted alignment has been passed
via -f. This way, the alignment is parsed as a single partition with either DNA or
amino acid (PROT) data.

• -q modelFile

specifies a raxml-style partitioning/model scheme for the alignment. For this op-
tion, a Phylip-formatted alignment must be passed via -f. See Section 9 for a
description of the file format.

• -s seed

provides a random seed. This number makes the run reproducible. The same
seed, data set configuration file will result in the exact same result (apart from
limitations given in Section 8.5). If you restart from a checkpoint file, this option
will be ignored.
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• -n id

provides a run id used for naming output files

• -r runid

restarts your run from a previous run id. If your previous ExaBayes-run did not
finish (because of a manual abort or walltime restrictions), this option can be
used for continuing the run. It is essential, that you pass the same configuration
and alignment file. Some adaptions to the configuration file are possible (e.g.,
larger number of generations to be run, lower topological convergence threshold).
Furthermore, all files that carry the previous runid in their name must be located
in the current folder.
Example:

$ mpirun -np 8 ./exabayes -s $RANDOM -n myId -c myConfig -f myBinaryAlnFile.bin
$ [runnig....] -> aborted!
$ mpirun -np 2 ./exabayes -r myId -n myIdContinued -c myConfig -f myBinaryAlnFile.bin -S

5.2 Optional Arguments

• -d

carries out a dry-run. Only checks your config and alignment file and does not
compute anything. Very recommendable, before submitting a large run to a cluster.

• -T n

Executes Yggdrasil with n threads. We recommend to use the multi-threaded
version of yggdrasil only on systems, where no MPI installation is available.

• -c configFile

passes a configuration file that specifies how the MCMC will be carried out (see
./examples/configFile-all-options.nex and Section 6 for details)

• -w workDir

specifies a location for output files

• -R num

(exabayes-only) specifies the number of runs (i.e., independent chains) to be exe-
cuted in parallel. Large runs should be carried out as separate runs, see Section 8
for further details.

• -C num

(exabayes-only) specifies the number of chains (i.e., coupled chains per indepen-
dent run) to be executed in parallel. Employing this option may be less efficient in
terms of runtime and memory than data-level parallelism, see Section 8 for further
details.
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• -S

try to save memory using the SEV-technique for gap columns on large gappy
alignments Please refer to this paper. On very gappy alignments this option yields
considerable runtime improvements.

• -M mode

specifies the memory versus runtime trade-off. <mode> is a value between 0
(fastest, highest memory consumption) and 3 (slowest, least memory consump-
tion). See Section 8.3 for details.

6 Configuration File

In this Section, we describe all available options of the configuration file in detail. The
configuration file is a file in nexus-format that is divided into sections. See examples/all-
options-documented.nex for a complete version (and maybe copy and customize this file).
None of the following blocks in mandatory. The parameter file itself is not mandatory
and the default values mentioned below are used instead. The nexus-syntax for declaring
a block is (here declaring a run block).

begin run;
option value

end;

6.1 Declaring and Linking Parameters

keyword: params
This section allows to declare and link parameters (e.g., branch lengths) across parti-

tions. You should have declared partitions in the partition file (passed via -q). If you
provided a partition file to the parser tool, then the binary output file already contains
information about partitions. Partition ids start with 0 and refer to the order provided
in the partition file.

Currently the following keywords can be used to specify a parameter linking scheme
(keywords are case-insensitive):

param explanation
stateFreq link the equilibrium state frequencies (4 for DNA, 20 for AA) for partitions
rateHet link the alpha parameter of the Γ distribution of rate heterogeneity among sites
revMat link the substitution rates in the GTR matrix (DNA:6, AA:190) across partitions
brlens link branch lengths across partitions
aaModel link the fixed rate substitution matrix across partitions (if applicable)

Note that, by default all parameters are unlinked for all partitions. Specifically re-
garding branch lengths, most people only want one global branch length parameter.

12

http://www.biomedcentral.com/1471-2105/12/470


If a partition id is omitted from the scheme, the default behaviour of ExaBayes is to
instantiate a new parameter for this partition (i.e., it is unlinked).

You have the following options for specifying linkage (here demonstrated for the branch
length parameter):

• use comma to declare partitions as separate parameters
example: brlens = (0,1,2,3)
result: v{0}, v{1}, v{2}, v{3}

• use plus to link two partitions into one parameter
example: brlens = (0 + 1 , 2 , 3)
result: v{0,1}, v{2}, v{3}

• use colon to declare a range of unlinked partitions (each one parameter)
example: brlens = (0:3)
result: v{0}, v{1}, v{2}, v{3}

• use dash to declare a range partitions linked into one parameter
example: brlens = (0-3)
result: v{0,1,2,3}

For most use cases, you probably will only want to link all branch lengths. However,
in case you work with protein partitions, please consider:

• By default ExaBayes creates one aaModel parameter for each of your amino acid
partitions. As state frequencies, ExaBayes uses the empirical frequencies provided
by the respective amino acid substitution matrix.

• Instead of using the empirical frequencies, you may want to let ExaBayes integrate
over these state frequencies. For doing so, you simply have to declare one of the
respective partitions when specifying the stateFreq parameter scheme. If you
have two AA partitions, then stateFreq = (0) instructs ExaBayes to integrate
over the state frequencies of the first amino acid model parameter.

• As an alternative to proposing fixed-rate AA substitution matrices for AA parti-
tions, you can use ExaBayes to integrate over amino acid GTR matrices (189 free
parameters). For doing so, declare (and link) the respective AA partitions in the
revMat linking scheme (e.g., revMat = (0+1) for 1 shared GTR matrix across 2
AA partitions).
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6.2 Declaring Priors for Parameters

keyword: priors
The prior block let’s you declare your prior belief regarding the values of parameters

ExaBayes integrates over. This affects parameters implicitly instantiated by ExaBayes
or explicitly defined in a params block (see Section 6.1).
By default priors specifications are applied to all matching parameters. You can

overwrite these general priors by specifying parameter-specific priors. For doing so, list
all at least one partition that is assigned to your target parameter in curly brackets after
the prior keyword. For instance:

brlenPr exponential(10)
brlenPr{0,2,10} uniform(1e-6,10)

applies a uniform prior with [1e − 6, 10] to all branch length parameters that contain
the partitions 0,2 or 10 and applies an exponential prior with λ = 10 to all remaining
branch length parameters.

6.2.1 Topology Prior

keyword: topoPr,
default: topoPr uniform()
valid values:

• fixed()
topology is kept fixed

• uniform()
all topologies have the same prior probability

6.2.2 Branch Lengths Prior

keyword: brlenPr ,
default: brlenpr exponential(10)
valid values:

• exponential( λ )
exponential prior with parameter λ,

• uniform(start,end)
uniform probability in the range [start, end]

• fixed( val )
all branch lengths will be assigned the value val that is kept fixed during the
analysis
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• fixed()
all branch lengths keep original branch length provided via a starting tree. If no
starting tree is available, a default value (currently 0.1) is assigned and kept fix
during MCMC sampling.

6.2.3 Reversible Matrix Prior

keyword: revMatPr
default: revMatPr dirichlet(1,...,1)
valid values:

• dirichlet( x1, x2, . . . , xn )
where for a dirichlet prior xi are the substitution rates in a GTR matrix and thus
n = 6 for DNA GTR matrices and n = 190 (use with care) for AA GTR matrices.

• fixed( x1, x2, . . . , xn )
fixed rates are assigned to the matrix and kept fix during MCMC sampling. The
values xi may be expressed as relative rates (i.e, ExaBayes will normalize the rates,
s.t. they sum up to 1.0)

6.2.4 Rate Heterogeneity Prior

keyword: shapePr,
default: shapePr uniform(0,200)
valid values:

• exponential( λ )
prior probability of α values have an exponential distribution with parameter λ

• uniform( start, end )
α values have uniform prior probability in the range [start, end]

6.2.5 State Frequencies Prior

keyword: stateFreqPr ,
default: dirichlet(1,1,. . .,1)
valid values:

• dirichlet( x1, x2, . . . , xn )
where for a dirichlet prior xi are the state frequencies in a GTR matrix and thus
n = 4 for DNA and n = 20 in a protein GTR matrix.
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• fixed( x1, x2, . . . , xn )
fixed values are assigned to the state frequencies and not changed during MCMC
sampling. xi can be expressed as relative rates (i.e., if the sum is ≥ 1, ExaBayes
does the normalizing for you)

6.2.6 Amino Acid Model Prior

keyword: aaPr,
default: aaPr disc(remainder=1.0)
valid values:

• disc( m1 = w1, m2 = w2, . . ., mn = wn )
a discrete probability distribution assigning weights wi to protein substitution
matrices mi. If only one model is specified, this is equivalent to a fixed prior.

m may be one of the following models: DAYHOFF, DCMUT, JTT, MTREV,
WAG, RTREV, CPREV, VT, BLOSUM62, MTMAM, LG, MTART, MTZOA,
PMB, HIVB, HIVW, JTTDCMUT, FLU.

By default, if a model is not mentioned in the list, then its prior probability is 0
and thus is not considered during MCMC sampling.

Additionally, you can include remainder value (i.e., remainder= wi). This means
that all matrices not mentioned have a prior probability of wi.

• fixed( m )
fix the value of the parameter to one of the models listed above

6.3 Configuring the Run

All of the following options need to be enclosed within a block featuring the keyword
run.

6.3.1 General Options

The following options allow you to exactly configure what kind of Bayesian sampling
is performed. Keywords and default values are mentioned along the description of the
options.

The most important settings are, how many independent runs (numRuns, default:
1) you want to run for how many generations (numGen, default: 1,000,000). If you
execute exactly 1 run, then ExaBayes will terminate after numGen generations. For more
than 1 run, ExaBayes will terminate once numGen generations have passed and one of
the following topological convergence diagnostics are below a specified threshold.

By default, ExaBayes draws a sample from every cold chain (i.e., for each independent
run) every 500 generations (can be changed via samplingFreq). To change the print
frequency (informing you about the likelihood state of each chain), modify printFreq.
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ExaBayes updates a checkpoint file at regular intervals (1,000 generations by default),
the respective variable for changing the frequency is checkPointInterval.
If you do not specify starting trees, then ExaBayes uses random trees as initial topol-

ogy. If you set parsimonyStart to true, a parsimony starting tree will be used instead
(recommendable).

Some proposals (e.g., the branch length multiplier) can be tuned for achieving good
acceptance ratios. ExaBayes tunes proposal parameters, once a proposal has been drawn
100 times (use tuneFreq to change this, set it to 0 to disable tuning).

If you are running a dataset in parallel that comprises many partitions, it is advisable
to group the proposals per partition into proposal sets (i.e., set proposalSets to true,
this is the default). If proposal sets are enabled and you have for instance multiple sub-
stitution matrix parameters, then ExaBayes will propose new substitution parameters
for each substitution matrix parameter one after another (instead of only drawing one
of the parameters at random).

6.3.2 Options regarding convergence

ExaBayes implements the same diagnostics for topological convergence as MrBayes and
BEAST. These are either the maximum or the average deviation of split (i.e., bipar-
tition) frequencies (MSDSF/ASDSF). By default, ExaBayes employs the ASDSF. You
can change to MSDSF by setting convergenceCriterion to max. For disabling the
convergence detection, set it to none.

The convergence threshold for either of these statistics can be specified via sdsfCon-
vergence (default: 0.05, i.e., the respective statistic must be ≤ 5%). Usually, splits
that exhibit a low posterior probability are excluded from this statistic, since it is hard
to determine their probability accurately. You can specify the exclusion threshold for
the ASDSF/MSDSF via sdsfIgnoreFreq (default: 0.1, i.e., splits that do not occur in
at least 10% of the trees of a run are ignored).

Also relevant for the convergence statistic is how many samples are discarded by
ExaBayes as burn-in. By default, the initial 25% of all sampled trees are discarded
(change this via burninProportion). If you want to use an absolute burn-in, specify
burninGen (e.g., "burninGen 1e4") instead. In this case, all trees sampled prior to
generation 10,000 are discarded.

ExaBayes checks for topological convergence once every run has proceeded by 5, 000
generations (set the diagFreq variable to change this value).

6.3.3 MC3 options

If you sample a rough likelihood landscape, you may want to employ Metropolis-coupled
MCMC (MC3, turned off by default). In very brief terms, this means that a number
of heated chains are coupled to the cold chain (from which samples are drawn). All
coupled chains attempt to swap their states at regular intervals. Thus, the cold chain
can be enabled to reach regions of the parameter space (potentially separated by values
with low posterior probability) that are otherwise very unlikely to be sampled.
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The total number of coupled chains can be specified via numCoupledChains.
This number includes the cold chain, so if you want to add three heated chains,
"numCoupledChains 4" is the correct statement.
The chains are heated incrementally, so the more chains you added, the hotter the

hottest chain will get. The heat β for the i-th heated chain (where i = 0 for the cold
chain) is defined as

β =
1

1 + i · δ
. (1)

When deciding upon acceptance of a new state, the likelihood and prior ratio are
exponentiated with β (thus increasing the acceptance probability for heated chains). By
default, the heat constant δ is set to 0.1. The value changed by setting the variable
heatFactor.

The expected number of swap attempts between chains per generation (i.e., after each
chain has proceeded this many generations) can be specified via numSwapPerGen
(default: 1). This is a very important variable that affects both the performance of the
MC3 mechanism as well as the your parallel runtime performance (if applicable).

The reason for this is, that an increase of number of coupled chains will not directly
translate into more efficient sampling. If the number of swap attempts is kept constant,
then it becomes increasingly unlikely that any change is propagated to the cold chain as
you increase the number of heated chains. On the other side, if you run coupled chains
in parallel (-R argument), then more swapping attempts will lead to increased waiting
times. This is, because processes computing the chain will have to wait for processes
that compute the likelihood of the other chain involved in a swap attempt.

If you want heated chains to start from the same topology as the cold chain, set
heatedChainsUseSame to true.

6.4 Configuring Proposals

ExaBayes allows you to configure proposals that are used to move your chains through
the parameter space. For each proposal, a relative weight governs, how often a specific
proposal is drawn. You can customize your proposal mixture by modifying these weights.
A proposal provides values for a single parameter only, so a change of the relative weight
affects all related proposals. Specifically the topological proposals are described in detail
in [3].

Using proposal sets does not change how often a proposal is drawn relative to runtime
(so no modifications are necessary).
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keyword full name affected parameters default weight
nodeSlider node slider branch lengths 5
treeLengthMult tree length multiplier branch lengths 1
branchMulti multiplier on branch lengths branch lengths 15
eTBR extending tree bisection and

reconnection (eTBR)
topology 5

eSPR extending subtree pruning
and regrafting (eSPR)

topology 5

parsimonySPR parsimony-biased subtree
pruning and regrafting

topology 5

stNNI stochastic nearest neighbor
interchange

topology 5

rateHetMulti multiplier on α rate heterogeneity 1
revMatSlider sliding window rev. matrix (DNA,AA) 1
revMatDirichlet dirichlet proposal rev. matrix (DNA,AA) 1
RevmatRateDirich partial dirichlet proposal rev. matrix (AA) 1
frequencySlider sliding window state frequencies 0.5
frequencyDirichlet dirichlet proposal state frequencies 0.5
aaModelJump fixed AA matrix amino acid model 1

Moreover, the behaviour of the topological proposals can be customized. The eSPR
prunes a subtree, follows down a random path (starting with the original pruning po-
sition) and chooses the current branch as re-grafting position with a certain stopping
probability (keyword: eSprStopProb). In case of the eTBR, the tree is bisected at a
branch and the bisected branch traverses the tree on both ends as described for the
eSPR (keyword for the stopping probability is eTbrStopProb).
The parsimony-biased SPR (parsSPR) move prunes a subtree and proposes a re-

graft position proportionally to the parsimony score of the resulting tree. The parsSPR
evaluates the parsimony score for regrafting positions that are no more than n steps
(keyword: parsSPRRadius) apart (i.e., it considers branches within a specified radius
for re-insertion). Computing the parsimony score is extremely fast and parallelized in
ExaBayes. If you are dealing with large trees, consider increasing the radius. It may not
increase mixing, but definitely will reduce the burn-in time and the increase in runtime
should not be problematic. The default value depends on the logarithm of the number
of taxa (a reasonable assumption, if we do not expect comb-like trees).

Similar to MrBayes, parsimony scores are heated (i.e., exponentiated) using the value
of parsimonyWarp. If this value is decreased, the probability that trees with low parsi-
mony score are proposed will get higher.

keyword default value
eSprStopProb 0.5
eTbrStopProb 0.5
parsimonyWarp 0.10
parsSprRadius b2 · log(n)c
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7 Pre-/post-processing utilities

For all utilities, please use the -h option, the documentation is mostly sufficient to
execute the programs. In this section, we provide additional hints and caveats about
employment of these tools.

7.1 parser

This utility parses an phylip-formatted alignment and creates a binary representation of
this alignment. You either have to indicate the data type of a single partition alignment
(via -m) or provide a model file via -q (see Section 9).
Parsing large alignment can take a considerable amount of time that is lost manifold

when ExaBayes is executed in parallel.

7.2 postProcParam

This utility can be used to summarize (similar to sump in MrBayes or the summary
statistics in Tracer) all sampled parameters.

This is straight-forward for continuous parameters (such as substitution rates). If you
integrate over fixed protein model matrices (e.g, WAG, LG,. . . ), you are integrating over
a discrete parameter. The output in the ExaBayes_parameters* will list the respective
matrices. In this case, postProcParam will create an extra column that contains the
discrete distribution.

You should check, if all ESS values are greater than 100 and (if available) PSRF values
are close to 1 (< 1.1 is considered good convergence).

7.3 sdsf

This utility computes deviations of split frequencies (either maximum or average, ab-
brev. as ASDSF/MSDSF). If you are integrating over topologies (you usually are),
ASDSF/MSDSF are an essential convergence criterion. Usually an ASDSF of 0.5− 1%
is considered "excellent convergence" and values between 1 − 5% are considered to be
acceptable.

You will encounter strongest deviations for branches with low posterior probability.
The stand-alone sdsf computes the same result that is also calculated, if you run

multiple independent analysis with convergence criterion. If you run an exceptionally
large analysis with multiple independent runs and plan on sampling a very large number
of trees, it is recommendable to launch each independent run as a distinct ExaBayes
session. You could have a master-script that launches the independent runs (to be run
for e.g., 2 h), then checks for convergence and restarts the runs from the respective
checkpoints, if not converged yet. If an immense number of processes is involved and
your cpu-h budget is tight, this saves you sequential overhead.
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7.4 credibleSet

This utility computes the credible set of topologies (up to a specified percentile) in one
or many tree sets. Use it for post-analyses of your tree samples.

7.5 extractBips

This utility extracts bipartitions (AKA splits or edges) from tree sets and the branch
lengths associated with these bipartitions. Note that, this utility also examines trivial
bipartitions (these correspond to outer branches in a tree).

extractBips produces the following files:

• ExaBayes_bipartitions.* lists the smaller partition of a bipartition (i.e., all
taxa omitted are in the complementary partition) and assigns a unique identifier
to the bipartition.

• ExaBayes_fileNames.* lists the file names of the input topology files and as-
signs a for reference in the remaining two files.

• ExaBayes_bipartitionBranchLengths.* contains all unique branch lengths
samples associated with a specific bipartition in a specific file. The file id and
bipartition id from the previous two files are used for that.

• ExaBayes_bipartitionStatistics.* contains summary statistics for the branch
lengths associated with bipartitions (similar to the output of postProcParam).
The ESS value indicates, whether you have sufficiently sampled the branch length
associated with a branch and the PSRF value can be used to judge, if the samples
from different chains converged against the same distribution. You have sufficiently
sampled a parameter, if the ESS is > 100 and a PRSF < 1.1 is an indicator of
good convergence.

If a bipartition occurs only in one chain, extractBips will produce -nan-values.

7.6 consense

This utility allows to build consensus trees from one or more tree sets. If computing
the consensus tree (specifically the extended MR consensus) becomes computationally
challenging, you may want to give the parallelized consensus tree algorithm in RAxML
a try (use -J MRE).
consense will produces two output files (one in Newick format, one in Nexus format).

Nodes are annotated with marginal probability (i.e., confidence), median, mean and
5%/95% quantile values.

If you ran analyses with unlinked branch lengths (i.e., you had multiple partitions
with a branch length parameter each), then you should create one consensus tree for
each branch length parameter. ExaBayes writes one topology file per parameter and
per analysis. So you can consense all files that have a "tree-x" (where x is the id of the
parameter) in their name.
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8 ExaBayes on Clusters/Supercomputers

The striking feature of ExaBayes is its capability to execute standard analyses on clus-
ters and super-computers efficiently. This section goes through various aspects worth
considering.

On clusters you often have to load a MPI module first. If you downloaded binaries, try
to execute ExaBayes using n processes and using either mpirun or mpiexec as follows:

$ mpirun -np n ./exabayes <further args>

The exact invocation may vary depending on the MPI installation. If this does not
work, make sure you downloaded the corrected package or consider compiling ExaBayes
from source. On clusters, you usually have to provide a batch script that is committed
to the scheduler.

In ExaBayes, you may have several computing nodes working on a chain in parallel.
We refer to the entirety of nodes computing a chain as parallel unit.

8.1 TL;DR summary

In most cases, if you have x processes available (e.g., 4 machines with each 12 cores ⇒
48 processes):

• if you run n independent analyses, use -R n.

• if you want to run m coupled chains, check, if ExaBayes becomes faster, if you
increase from -C 1 (default) over -C 2 to -C 4 up to -C m (often the optimum is
2 or 4). For each increment (default: 500 generations), ExaBayes prints the time
required for the last increment (use this for benchmarking).

• check the load balance output. For good parallel efficiency, each process should at
least have ≈ 100 patterns. Otherwise, less processes may be sufficient, but more
do not hurt, if you are not under a budget constraint.

8.2 Choosing the right kind of parallelism

ExaBayes implements three levels of parallelism (in descending order of granularity):

• runs-level parallelism,

• chain-level parallelism,

• data parallelism.

For optimal performance, please consider the following example. Assume, you run m
coupled chains and n independent runs, while you specify that mp coupled chains and
np independent runs are run in parallel (via -R and -C). For reasons of load balance, m
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should be a multiple of mp (analog for n). Assume each of your computing nodes has k
cores and you want to use l computing nodes for each parallel working unit (working on
one coupled chain in an independent run that is executed in parallel). Thus, you will
obtain optimal performance, if you execute ExeBayes with a total number of processes
of

processes = mp · np · l · k. (2)

If the number of cores k is divisible by 2, l = 2i (where i < 0) works as well. This way
several parallel working units fit on a node.

8.2.1 On Run-level Parallelism

Obviously, run-level parallelism is the most efficient kind of parallelism. Processes work-
ing on different runs rarely have to communicate with each other (except for writing a
checkpoint, so make sure your checkpointing frequency is not too low). If you instruct
ExaBayes to execute 2 runs parallel, then using twice as many processes should result
in an optimal speedup of two.

Alternatively, you can commit each independent run separately to the cluster and
naturally get the same parallel speedup this way. You will save computational time, if
you regularly check for topological convergence (using the sdsf tool). So one possibility
is to commit several runs for which you specify a large number of generations in the config
file and a relatively short walltime (maybe 2h). After the scripts have finished, another
script checks the ASDSF and recommits the runs (using the checkpointing functionality
-r). Or you could commit several jobs for each of your run and each job has to wait for
the previous job to finish (e.g., using -hold_jid with Grid Engine).
The optimal strategy depends on the configuration of your cluster/supercomputer. In

some instances a single large run parallelized via -R allows your job a higher priority in
the queue, in other instances smaller jobs that run for a short period will allow you to
get the results as quickly as possible.

If you sample an immense number of trees using an immense number of processes, we
recommend to choose a non-monolithic (e.g., the second) strategy. The sdsf requires
a bit of runtime on its own that increases with the number of trees and that is lost
manifold, if many processes have to wait before they continue.

8.2.2 On Chain-level Parallelism

Employing chain-level parallelism in Bayesian analyses comes with some caveats. The
speedup you can achieve with coupled chains strongly depends on how often an individual
coupled chain is involved in a swapping attempt. Each time two chains a and b swap, all
processes working on a have to wait for chain b to reach the respective generation and
vice versa. Reducing the number of swap attempts (via numSwapPerGen) will improve
your parallel efficiency, but probably reduces your mixing between coupled chains (e.g.,
it is less likely that the cold chain benefits from the hotter ones).
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So while runtime efficiency probably is the weakest argument for employing chain-level
parallelism, memory is a point to consider (also see section 8.3). Likelihood computation
is the single dominating factor of memory consumption. The formula for computing
memory requirements (in Byte) of a single chain in one run is

mem = 4 · 8 · r · p · (n− 2), (3)

where r is 4 for DNA and 20 for AA data, p is the number of unique site patterns in
your alignment and n is the number of taxa.

For executing m coupled chains (efficiently), you require m + 1 sets of likelihood
arrays, thus mem · (m+ 1) byte. Even if data parallelism is favorable for your dataset,
memory requirements may become prohibitive. If you employ more processes, you will
also increase the amount of memory that is at your disposal. However, depending on the
size of your dataset, parallel efficiency of data parallelism will decrease at some point.
This is where chain-level parallelism should be considered.

Using chain-level will allow you to increase the number of processes, while still enough
work load is assigned to each process.

As described above you need an additional set of likelihood arrays. Unfortunately,
this rule still holds, when chain-level parallelism is employed. Assuming, you run mp

coupled chains in parallel, you will need mem · (m+mp) byte. For a discussion on how
to reduce mp, please see Section 8.3.

8.2.3 On Data Parallelism

Data parallelism means that the unique site patterns of your alignment are spread out
across processes. As discussed at the beginning of this section you should choose the
number of processes such that the processes involved in computing the likelihood of a
single tree are distributed across as few computing nodes as possible.

Since it takes longer to compute the likelihood of a larger pattern (i.e., your alignment
contains more taxa), it is hard to say until which point data parallelism can be employed
efficiently. As a rule of thumb each process should at least be responsible for at least
100 sites. If a parallel run of ExaBayes is started, ExaBayes prints the load distribution
(i.e., how many pattern are assigned to each process) before starting the computation.

8.3 Saving Memory

As mentioned earlier, with ExaBayes you can do Bayesian MCMC on alignments of
which the size is only limited by the total memory you have available in your computing
center.

In addition to that, ExaBayes implements techniques to reduce the overall memory
footprint.

The -M x option allows you to trade runtime for reduced memory consumption. The
higher x, the slower but less memory-intensive are the likelihood computations. Remem-
ber, that for any -M x ExaBayes will yield the exact same results with the limitations
described in section 8.5.
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This is particularly relevant, if you use chain-level parallelism, since increased paral-
lelism also increases the memory-overhead as explained in section 8.2.2. Recall that for
x=0, you need the (m+mp) sets of likelihood arrays (where m is the number of coupled
chains and mp the number of coupled chains executed in parallel). This is, because
ExaBayes uses an additional set of likelihood arrays to evaluate the likelihood of a new
proposal and saves the previous likelihood arrays for the case of rejection of the proposal.

With -M 1, you can instruct ExaBayes to not save likelihood arrays for arrays for inner
nodes that are (recursively) computed from two leave (resp. tip) nodes. These nodes
are particularly fast to compute, so you will not loose too much runtime. For a balanced
binary tree (best case), the memory consumption of the saved likelihood arrays (adding
the mp to the equation of memory consumption) is reduced by more than 50%. In the
worst case (a comb-/caterpillar-like tree), the memory consumption is merely reduced
by 1 array.

When run with -M 2, ExaBayes will only save likelihood arrays for the most expensive
kind of nodes. These are nodes that have two inner nodes as their descendants. In terms
of memory consumption, a balanced binary tree is the worst case (saving only > 50% of
the additional likelihood arrays). In the best case (here the comb-like tree), ExaBayes
will not save any addition likelihood arrays.

For -M 3, ExaBayes by default does not save any likelihood arrays. The run will be
executed substantially slower (but still less than a factor of 2), but specifically if you
run a lot of chains in parallel, the factor (m+mp) in the memory consumption formula
is reduced to m.

Aside from that, ExaBayes implements a subtree equality vector-technique, that allows
you to save memory for dataset that contain many gaps or undetermined characters (see
[2]). The amount of memory you save is proportional to the amount of missing data and
the runtime penalty should be negligible (resp., there are instances where this actually
increases runtime performance).

8.4 Highly Partitioned Runs

In a parallel setting, it is less straight-forward to efficiently execute an analysis, if the
alignment is highly partitioned. The issue of load distribution in case of data parallelism
is discussed in section 8.2.3. The upshot is that you should, whether all processes of a
parallel unit have about the same portion of the overall data. In parallel runs, ExaBayes
initially lists, how many characters, partitions, (coupled) chains and runs are assigned
to each processor. For efficiency it is important that the option proposalSets is by
default set to true (default).

8.5 Note on Reproducibility

ExaBayes comes with a strong guarantee of reproducibility.
Ideally, the same seed, configuration file and alignment file have to result in the ex-

act same outcome (e.g., topology/parameter samples) regardless whether yggdrasil or
exabayes were employed. This should hold for any kind of command line parameter
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governing the specifics of how calculations are to be performed. Furthermore, repeated
continuations from a checkpoint file should not influence the output either.

Any change in the configuration file potentially interferes with perfect reproducibility
(e.g., increasing the checkpoint frequency).

When parallelism is involved, this guarantee does not hold necessarily. The reason for
this is indeterminism in the calculation of the likelihood, when conducted on multiple
processors. Compensating for this problem comes at the cost of runtime performance,
thus this has not been implement in ExaBayes.

In other words: running ExaBayes with a different number of processes theoretically
may yield different results (however, we have not observed this for any MPI implemen-
tations yet).

All of the above does not influence the correctness of the results, however it limits the
guarantee that the chain is in the exact same state.

9 File Format: Model/Partitioning file

If you want to partition your data, you have to provide a model file either to the parser
utility or to yggdrasil/exabayes (via -q). In brief, this format is identical to the
raxml model-file format, except that instead of specifying specific protein substitution
matrices, you must identify a protein partition with PROT instead of a matrix name
such as LG.

The example file below demonstrates the syntax of this file format:

DNA, gene1=1-300
DNA, gene2-codonPos1=301-500\3
DNA, gene2-codonPos2=302-500\3
DNA, gene2-codonPos3=303-500\3
PROT, protId=501-800
DNA, composit=801-1000,1101-1200
DNA, gene3=1000-1100

The bottom line is:

• data type identifier: DNA or PROT (followed by comma)

• partitionName (followed by equal sign)

• alignment positions:

– range component, see "gene1"

– strided range (useful for codon positions), see "gene2-codonPos1", "gene2-
codonPos2" and "gene2-codonPos3". Notice that the starting position of the
range is incremented for the second and third codon position.

– combining elements, see "composit". You can combine any element using a
comma.
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For concatenating a large number of alignments efficiently, we distribute this tool
separately from ExaBayes. It automatically creates the appropriate model file, although
you will have to manually set the data type for amino acid partitions. Please use with
caution.

A side note on efficiency: partitioning your data makes likelihood calculation less effi-
cient. If for instance you partition your data and link all parameters across all partitions,
then you could have provided an unpartitioned alignment and the MCMC sampling
would require less computational resources.
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